一篇文章搞懂 Hive 的调优思路

前言

本文隶属于专栏《1000个问题搞定大数据技术体系》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!

本专栏目录结构和参考文献请见1000个问题搞定大数据技术体系

姊妹篇

Hadoop 调优之 Linux 操作系统调优篇
Hadoop 调优之 HDFS 调优篇
Hadoop 调优之 MapReduce 调优篇
Hadoop 调优之 YARN 调优篇

正文

在这里插入图片描述

1. Fetch抓取

  • Fetch抓取是指,Hive中对某些情况的查询可以不必使用MapReduce计算

  • 例如:select * from employee; 在这种情况下,Hive可以简单地读取employee对应的存储目录下的文件,然后输出查询结果到控制台

  • 在hive-default.xml.template文件中 hive.fetch.task.conversion 默认是more,

老版本hive默认是minimal,该属性修改为more以后,在全局查找、字段查找、limit查找等都不走 MapReduce。

实践

  • 把 hive.fetch.task.conversion设置成none,然后执行查询语句,都会执行MapReduce程序
set hive.fetch.task.conversion=none;
select * from employee;
select sex from employee;
select sex from employee limit 3;
  • 把hive.fetch.task.conversion设置成more,然后执行查询语句,如下查询方式都不会执行MapReduce程序。
set hive.fetch.task.conversion=more;
select * from employee;
select sex from employee;
select sex from employee limit 3;

2. 本地模式

  • 在Hive客户端测试时,默认情况下是启用hadoop的job模式,把任务提交到集群中运行,这样会导致计算非常缓慢;

  • Hive可以通过本地模式在单台机器上处理任务。对于小数据集,执行时间可以明显被缩短。

实践

--开启本地模式,并执行查询语句
set hive.exec.mode.local.auto=true;//开启本地mr

--设置local mr的最大输入数据量,当输入数据量小于这个值时采用local mr的方式,
--默认为134217728,即128M
set hive.exec.mode.local.auto.inputbytes.max=50000000;

--设置local mr的最大输入文件个数,当输入文件个数小于这个值时采用local mr的方式,
--默认为4
set hive.exec.mode.local.auto.input.files.max=5;

--执行查询的sql语句
select * from employee cluster by deptid;
--关闭本地运行模式
set hive.exec.mode.local.auto=false;
 select * from employee cluster by deptid;

3. 表的优化

3.1 小表、大表 join

  • 将key相对分散,并且数据量小的表放在join的左边,这样可以有效减少内存溢出错误发生的几率;再进一步,可以使用map join让小的维度表(1000条以下的记录条数)先进内存。在map端完成reduce。
  • 实际测试发现:新版的hive已经对小表 join 大表和大表 join 小表进行了优化。小表放在左边和右边已经没有明显区别。

3.2 大表 join 大表

  • 1.空 key 过滤
    • 有时join超时是因为某些key对应的数据太多,而相同key对应的数据都会发送到相同的reducer上,从而导致内存不够。
    • 此时我们应该仔细分析这些异常的key,很多情况下,这些key对应的数据是异常数据,我们需要在SQL语句中进行过滤。
  • 2、空 key 转换
    • 有时虽然某个 key 为空对应的数据很多,但是相应的数据不是异常数据,必须要包含在 join 的结果中,此时我们可以表 a 中 key 为空的字段赋一个随机的值,使得数据随机均匀地分不到不同的 reducer 上。

3.3 map join

  • 如果不指定MapJoin 或者不符合 MapJoin的条件,那么Hive解析器会将Join操作转换成Common Join,即:在Reduce阶段完成join。容易发生数据倾斜。可以用 MapJoin 把小表全部加载到内存在map端进行join,避免reducer处理。

  • 1、开启MapJoin参数设置

--默认为true
set hive.auto.convert.join = true;
  • 2、大表小表的阈值设置(默认25M一下认为是小表)
set hive.mapjoin.smalltable.filesize=25000000;

3.4 group By

  • 默认情况下,Map阶段同一Key数据分发给一个reduce,当一个key数据过大时就倾斜了。

  • 并不是所有的聚合操作都需要在Reduce端完成,很多聚合操作都可以先在Map端进行部分聚合,最后在Reduce端得出最终结果。

  • 开启Map端聚合参数设置

--是否在Map端进行聚合,默认为True
set hive.map.aggr = true;
--在Map端进行聚合操作的条目数目
set hive.groupby.mapaggr.checkinterval = 100000;
--有数据倾斜的时候进行负载均衡(默认是false)
set hive.groupby.skewindata = true;

当选项设定为 true,生成的查询计划会有两个MR Job。

第一个MR Job中,Map的输出结果会随机分布到Reduce中,每个Reduce做部分聚合操作,并输出结果,

这样处理的结果是相同的Group By Key有可能被分发到不同的Reduce中,从而达到负载均衡的目的;

第二个MR Job再根据预处理的数据结果按照Group By Key分布到Reduce中(这个过程可以保证相同的Group By Key被分布到同一个Reduce中),最后完成最终的聚合操作。

3.5 count(distinct)

  • 数据量小的时候无所谓,数据量大的情况下,由于count distinct 操作需要用一个reduce Task来完成,这一个Reduce需要处理的数据量太大,就会导致整个Job很难完成,一般count distinct使用先group by 再count的方式替换
--每个reduce任务处理的数据量 默认256000000(256M)
set hive.exec.reducers.bytes.per.reducer=32123456;

select  count(distinct ip )  from log_text;

转换成

select count(ip) from (select ip from log_text group by ip) t;


虽然会多用一个Job来完成,但在数据量大的情况下,这个绝对是值得的。

3.6 笛卡尔积

  • 尽量避免笛卡尔积,即避免join的时候不加on条件,或者无效的on条件
  • Hive 只能使用1个 reducer 来完成笛卡尔积。

4. 使用分区剪裁、列剪裁

  • 尽可能早地过滤掉尽可能多的数据量,避免大量数据流入外层SQL。
  • 列剪裁
    • 只获取需要的列的数据,减少数据输入。
  • 分区裁剪
    • 分区在hive实质上是目录,分区裁剪可以方便直接地过滤掉大部分数据。
    • 尽量使用分区过滤,少用select *

5. 并行执行

  • 把一个sql语句中没有相互依赖的阶段并行去运行。提高集群资源利用率
--开启并行执行
set hive.exec.parallel=true;
--同一个sql允许最大并行度,默认为8。
set hive.exec.parallel.thread.number=16;

6. 严格模式

  • Hive提供了一个严格模式,可以防止用户执行那些可能意想不到的不好的影响的查询。

  • 通过设置属性hive.mapred.mode值为默认是非严格模式nonstrict 。开启严格模式需要修改hive.mapred.mode值为strict,开启严格模式可以禁止3种类型的查询。

--设置非严格模式(默认)
set hive.mapred.mode=nonstrict;

--设置严格模式
set hive.mapred.mode=strict;
  • (1)对于分区表,除非where语句中含有分区字段过滤条件来限制范围,否则不允许执行
--设置严格模式下 执行sql语句报错; 非严格模式下是可以的
select * from order_partition;

异常信息:Error: Error while compiling statement: FAILED: SemanticException [Error 10041]: No partition predicate found for Alias "order_partition" Table "order_partition" 
  • (2)对于使用了order by语句的查询,要求必须使用limit语句
--设置严格模式下 执行sql语句报错; 非严格模式下是可以的
select * from order_partition where month='2019-03' order by order_price; 

异常信息:Error: Error while compiling statement: FAILED: SemanticException 1:61 In strict mode, if ORDER BY is specified, LIMIT must also be specified. Error encountered near token 'order_price'
  • (3)限制笛卡尔积的查询

    • 严格模式下,避免出现笛卡尔积的查询

7. JVM重用

  • JVM重用是Hadoop调优参数的内容,其对Hive的性能具有非常大的影响,特别是对于很难避免小文件的场景或task特别多的场景,这类场景大多数执行时间都很短。

  • JVM重用可以使得JVM实例在同一个job中重新使用N次。减少进程的启动和销毁时间。

-- 设置jvm重用个数
set mapred.job.reuse.jvm.num.tasks=5;

8. 推测执行

  • Hadoop采用了推测执行(Speculative Execution)机制,

它根据一定的法则推测出“拖后腿”的任务,并为这样的任务启动一个备份任务,让该任务与原始任务同时处理同一份数据,并最终选用最先成功运行完成任务的计算结果作为最终结果。

--开启推测执行机制
set hive.mapred.reduce.tasks.speculative.execution=true;

9. 压缩

  • Hive表中间数据压缩
#设置为true为激活中间数据压缩功能,默认是false,没有开启
set hive.exec.compress.intermediate=true;
#设置中间数据的压缩算法
set mapred.map.output.compression.codec= org.apache.hadoop.io.compress.SnappyCodec;
  • Hive表最终输出结果压缩
set hive.exec.compress.output=true;
set mapred.output.compression.codec= 
org.apache.hadoop.io.compress.SnappyCodec;

关于 Hive 数据压缩的更多内容请参考——

10. 数据倾斜

合理设置Map数

  1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。

主要的决定因素有:input的文件总个数,input的文件大小,集群设置的文件块大小。

  1. 是不是map数越多越好?

答案是否定的。

如果一个任务有很多小文件(远远小于块大小128m),则每个小文件也会被当做一个块,用一个map任务来完成,

而一个map任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。

而且,同时可执行的map数是受限的。

  1. 是不是保证每个map处理接近128m的文件块,就高枕无忧了?

答案也是不一定。

比如有一个127m的文件,正常会用一个map去完成,但这个文件只有一个或者两个小字段,却有几千万的记录,如果map处理的逻辑比较复杂,用一个map任务去做,肯定也比较耗时。

针对上面的问题2和3,我们需要采取两种方式来解决:即减少map数和增加map数;

小文件合并

  • 在map执行前合并小文件,减少map数:

  • CombineHiveInputFormat 具有对小文件进行合并的功能(系统默认的格式)

set hive.input.format= org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;

复杂文件增加Map数

  • 当input的文件都很大,任务逻辑复杂,map执行非常慢的时候,可以考虑增加Map数,来使得每个map处理的数据量减少,从而提高任务的执行效率。

  • 增加map的方法为

    • 根据 ==computeSliteSize(Math.max(minSize,Math.min(maxSize,blocksize)))==公式
    • 调整maxSize最大值。让maxSize最大值低于blocksize就可以增加map的个数。
MapReduce.input.fileinputformat.split.minsize=1 默认值为1

MapReduce.input.fileinputformat.split.maxsize=Long.MAXValue 默认值Long.MAXValue因此,默认情况下,切片大小=blocksize 

maxsize(切片最大值): 参数如果调到比blocksize小,则会让切片变小,而且就等于配置的这个参数的值。

minsize(切片最小值): 参数调的比blockSize大,则可以让切片变得比blocksize还大。
  • 例如
--设置maxsize大小为10M,也就是说一个block的大小为10M
set MapReduce.input.fileinputformat.split.maxsize=10485760;

合理设置Reduce数

  • 1、调整reduce个数方法一

① 每个Reduce处理的数据量默认是256MB

set hive.exec.reducers.bytes.per.reducer=256000000;

② 每个任务最大的reduce数,默认为1009

set hive.exec.reducers.max=1009;

③ 计算reducer数的公式

N=min(参数2,总输入数据量/参数1)
  • 2、调整reduce个数方法二
--设置每一个job中reduce个数
set MapReduce.job.reduces=3;
  • 3、reduce个数并不是越多越好
    • 过多的启动和初始化reduce也会消耗时间和资源;
    • 同时过多的reduce会生成很多个文件,也有可能出现小文件问题
对于Hive调优思路,可以从以下几个方面入手: 1. 数据存储和分区设计:合理的数据存储和分区设计可以提高查询性能。根据业务需求,将数据按照合适的列进行分区,这样可以减少数据扫描量。 2. 数据压缩:使用合适的压缩格式可以减小数据存储空间,并提高查询性能。例如,使用Snappy、LZO等压缩算法来减少磁盘IO和网络传输。 3. 数据倾斜处理:当某些列的值过于集中,导致某些Task处理的数据量远大于其他Task时,会导致任务执行时间不均衡。通过对倾斜键进行处理,如使用随机前缀或者进行拆分处理,可以解决数据倾斜问题。 4. 合理设置Hive参数:根据实际情况调整Hive的参数配置,以提高查询性能。常见的参数包括:hive.exec.parallel、hive.tez.container.size、hive.vectorized.execution.enabled等。 关于Hive的参数配置,下面是一些常用的参数: 1. hive.exec.parallel:设置并行执行任务的线程数,默认为1。可以根据集群资源情况适当调整,以提高任务执行效率。 2. hive.tez.container.size:设置每个Tez任务的容器大小,默认为1024(MB)。可以根据具体的任务需求和集群资源情况进行调整,以充分利用集群资源。 3. hive.vectorized.execution.enabled:启用向量化执行,可提高查询性能。默认为false,可以通过设置为true来开启向量化执行。 4. hive.optimize.sort.dynamic.partition:动态分区排序优化,默认为true。对于动态分区表,可以开启该参数以提高插入性能和查询性能。 5. hive.stats.autogather:自动收集统计信息,默认为true。开启该参数可以帮助优化查询计划,提高查询性能。 以上是一些常见的Hive调优思路和参数配置,具体的调优策略还需要根据实际情况进行调整和优化。
评论 33
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值