前言
本文隶属于专栏《机器学习的一百个概念》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!
本专栏目录结构和参考文献请见[《机器学习的一百个概念》
ima 知识库
知识库广场搜索:
知识库 | 创建人 |
---|---|
机器学习 | @Shockang |
机器学习数学基础 | @Shockang |
深度学习 | @Shockang |
正文
📚基础概念:闵可夫斯基距离的深度解读
一、定义与起源
闵可夫斯基距离(Minkowski Distance)犹如一把神奇的钥匙,能开启多种距离度量方式的大门。想象一下,在不同的出行场景中,有时走直线最快(类似欧式距离),有时得沿着街道一格一格走(好比曼哈顿距离),而闵可夫斯基距离通过参数 p p p 的变化,就能在这些不同的“走法”之间灵活切换。
对于两个 n n n 维变量 A ( x 11 , x 12 , ⋯ , x 1 n ) A(x_{11},x_{12},\cdots,x_{1n}) A(x11,x12,⋯,x1n) 与 B ( x 21 , x 22 , ⋯ , x 2 n ) B(x_{21},x_{22},\cdots,x_{2n}) B(x21,x22,⋯,x2n),其闵氏距离公式为 d 12 = ∑ k = 1 n ∣ x 1 k − x 2 k ∣ p p d_{12}=\sqrt[p]{\sum_{k = 1}^{n}|x_{1k}-x_{2k}|^{p}} d12=p∑k=1n∣x1k−x2k∣p(需注意,这里 p ≥ 1 p\geq1 p≥1)。可以把每个维度想象成不同方向的街道,计算两点间的闵氏距离,就是综合考虑在各个方向街道上行走的距离,然后依据 p p p 的取值,以不同方式把这些方向上的距离综合起来得到一个总的距离值。
✨核心结论:闵氏距离的通用公式 d 12 = ∑ k = 1 n ∣ x 1 k − x 2 k ∣ p p d_{12}=\sqrt[p]{\sum_{k = 1}^{n}|x_{1k}-x_{2k}|^{p}} d12=p∑k=1n∣x1k−x2k∣p是计算的基础,参数 p p p 决定具体距离度量方式,且它与常见距离公式紧密相关。
二、发展简史
- 1907年:诞生背景
德国数学家H.闵可夫斯基在爱因斯坦提出狭义相对论之后,将相关理论结果重新表述成(3 + 1)维的时空,即闵可夫斯基时空,闵可夫斯基距离也应运而生,为后续时空和距离度量等方面的研究奠定了基础。 - 2000s:关键改进(应用拓展方面)
随着计算机技术飞速发展和数据量不断增加,闵氏距离在聚类分析、异常检测等数据科学相关领域的应用得到进一步拓展。人们开始深入研究如何根据不同数据特点更好地利用它进行数据分析,比如探讨不同量纲数据下的处理问题。 - 2020s:最新形态(应用结合方面)
在当下的2020s,闵氏距离与机器学习算法结合更加紧密。在一些先进的聚类算法和分类算法中发挥重要作用,同时研究者们也在探索克服其自身局限性,如考虑如何更好地处理数据各维度的相关性等问题,以便在更复杂的数据环境下更准确地度量距离。
理解这些基础内容,能为我们深入探讨闵氏距离的数学原理以及在各种场景下的具体运作方式打下良好基础,接下来就让我们进一步揭开它背后的数学奥秘吧。
⚡深入理解:闵可夫斯基距离的特性剖析
一、数学本质
闵可夫斯基距离的公式 D ( x , y ) = ( ∑ i = 1 n ∣ x i − y i ∣ p ) 1 / p D(x, y) = \left( \sum_{i=1}^n |x_i - y_i|^p \right)^{1/p} D(x,y)=(∑i=1n∣xi−yi∣p)1/p 是衡量多维空间中两点 x = ( x 1 , x 2 , ⋯ , x n )