高斯核密度估计和Ep核密度估计应用于目标检测

本文探讨了在目标检测中的核密度估计方法,包括Epanechnikov和高斯核函数。这两种核模型在概率密度估计中起到关键作用,对于图像分割和识别具有重要意义,特别是在复杂场景的实时处理中。文章详细介绍了Epanechnikov核函数的原理和计算公式,并阐述了高斯核函数在多通道彩色图像处理中的应用。
摘要由CSDN通过智能技术生成

目标检测,也叫目标提取,是一种基于目标几何和统计特征的图像分割,它将目标的分割和识别合二为一,其准确性和实时性是整个系统的一项重要能力。尤其是在复杂场景中,需要对多个目标进行实时处理时,目标自动提取和识别就显得特别重要。

随着计算机技术的发展和计算机视觉原理的广泛应用,利用计算机图像处理技术对目标进行实时跟踪研究越来越热门,对目标进行动态实时跟踪定位在智能化交通系统、智能监控系统、军事目标检测及医学导航手术中手术器械定位等方面具有广泛的应用价值。

本文介绍高斯核密度估计和Ep核密度估计两种核模型算法:

1、Epanechnikov核函数介绍

核密度估计是在概率论中用来估计未知的密度函数,属于非参数检验方法之一,由Rosenblatt (1955)和Emanuel Parzen(1962)提出,又名Parzen窗(Parzen window)。

假设我们有n个数X1-Xn,我们要计算某一个数X概率密度有多大。核密度估计的方法是这样的:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值