365天挑战LeetCode1000题——Day 002 动态规划 02

本文通过动态规划解决两道股票交易问题:买卖股票的最佳时机含手续费和最佳买卖股票时机含冷冻期。核心思路是利用二维数组或空间优化记录不同状态下的最大收益,并给出详细的状态转移方程。通过这两个问题,探讨了在复杂动态规划问题中如何找到切入点。
摘要由CSDN通过智能技术生成

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

Study less, study smart……
今天的每日一题太难了,选择性放弃


1. 买卖股票的最佳时机含手续费

给定一个整数数组 prices,其中 prices[i]表示第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。

你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。

返回获得利润的最大值。

注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。

1.1 动态规划(二维数组)

动态规划三步走:
(1)确定状态:

  • F[i][0]是第i天持有股票的最大收益
  • F[i][1]是第i天不持有股票且(i + 1)天为冷冻期的最大收益
  • F[i][2]是第i天不持有股票且(i + 1)天不为冷冻期的最大收益

(2)确定状态转换:持有股票,要么持有昨天就有的那支,要么今天为非冷冻期时买入今天的股票;不持有股票,且明天是冷冻期,那么今天把股票卖了;不持有股票,且明天不是冷冻期,今天没卖股票且没持有股票,最大收益是昨天不持有股票的两种情况的最大值。

  • F [ i ] [ 0 ] = m a x ( F [ i − 1 ] [ 0 ] , F [ i − 1 ] [ 2 ] + p r i c e s [ i ] ) F[i][0] = max(F[i - 1][0], F[i - 1][2] + prices[i]) F[i][0]=max(F[i1][0],F[i1][2]+prices[i])
  • F [ i ] [ 1 ] = F [ i ] [ 0 ] + p r i c e s [ i ] F[i][1] = F[i][0] + prices[i] F[i][1]=F[i][0]+prices[i]
  • F [ i ] [ 2 ] = m a x ( F [ i − 1 ] [ 1 ] , F [ i − 1 ] [ 2 ] ) F[i][2] = max(F[i - 1][1], F[i - 1][2]) F[i][2]=max(F[i1][1],F[i1][2])

(3)确定初始状态:

  • F [ 0 ] [ 0 ] = − p r i c e s [ 0 ] F[0][0] = -prices[0] F[0][0]=prices[0]
  • F [ 0 ] [ 1 ] = 0 F[0][1] = 0 F[0][1]=0
  • F [ 0 ] [ 2 ] = 0 F[0][2] = 0 F[0][2]=0
class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int n = prices.size();
        vector<vector<int>> dp(n, vector<int>(3));
        dp[0][0] = -prices[0];
        dp[0][1] = 0;
        dp[0][2] = 0;
        for (int i = 1; i < n; i++) {
            dp[i][0] = max(dp[i - 1][0], dp[i - 1][2] - prices[i]);
            dp[i][1] = dp[i][0] + prices[i];
            dp[i][2] = max(dp[i - 1][1], dp[i - 1][2]);
        }
        return max(dp[n - 1][1], dp[n - 1][2]);
    }
};

1.2 优秀的解法:动态规划(空间优化)

F[i]只与F[i-1]有关,可以优化空间:

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int n = prices.size();
        vector<vector<int>> dp(n, vector<int>(3));
        int dp0 = -prices[0];
        int dp1 = 0;
        int dp2 = 0;
        for (int i = 1; i < n; i++) {
            int newdp0 = max(dp0, dp2 - prices[i]);
            int newdp1 = newdp0 + prices[i];
            int newdp2 = max(dp1, dp2);
            dp0 = newdp0;
            dp1 = newdp1;
            dp2 = newdp2;
        }
        return max(dp1, dp2);
    }
};

2. 最佳买卖股票时机含冷冻期

给定一个整数数组prices,其中第 prices[i] 表示第 i 天的股票价格 。​

设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):

卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

2.1 动态规划

写了上面这题,这题就非常简单了,状态转移方程略……

class Solution {
public:
    int maxProfit(vector<int>& prices) {
        int n = prices.size();
        vector<vector<int>> dp(n, vector<int>(3));
        int dp0 = -prices[0];
        int dp1 = 0;
        int dp2 = 0;
        for (int i = 1; i < n; i++) {
            int newdp0 = max(dp0, dp2 - prices[i]);
            int newdp1 = newdp0 + prices[i];
            int newdp2 = max(dp1, dp2);
            dp0 = newdp0;
            dp1 = newdp1;
            dp2 = newdp2;
        }
        return max(dp1, dp2);
    }
};

总结

造,才发现把昨天发的文章直接改没了,不过无所谓,才第二天,大概知道该怎么发文章了……
今天的题目给我的启发是,在比较复杂的dp问题时,切入点可以是二维的,就是在每个时间段采取不同的策略,时间段一个维度,策略一个维度……
明天继续加油!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值