365天挑战LeetCode1000题——Day 015 动态规划 13


前言

今天的每日一题很难,dp很简单……
以后每日一题没理解就不贴了,没什么意义……


1. 下降路径最小和

给你一个 n x n 的 方形 整数数组 matrix ,请你找出并返回通过 matrix 的下降路径 的 最小和 。

下降路径 可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。具体来说,位置 (row, col) 的下一个元素应当是 (row + 1, col - 1)、(row + 1, col) 或者 (row + 1, col + 1) 。

1.1 动态规划(二维数组)

砍刀切菜的难度

class Solution {
public:
    int minFallingPathSum(vector<vector<int>>& matrix) {
        int n = matrix.size();
        for (int i = 1; i < n; i++) {
            matrix[i][0] += min(matrix[i - 1][0], matrix[i - 1][1]);
            matrix[i][n - 1] += min(matrix[i - 1][n - 2], 
            matrix[i - 1][n - 1]);
            for (int j = 1; j < n - 1; j++) {
                matrix[i][j] += min(matrix[i - 1][j], 
                min(matrix[i - 1][j - 1], matrix[i - 1][j + 1]));
            }
        }
        return *min_element(matrix[n - 1].begin(), matrix[n - 1].end());
    }
};

2. 三角形最小路径和

给定一个三角形 triangle ,找出自顶向下的最小路径和。

每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。也就是说,如果正位于当前行的下标 i ,那么下一步可以移动到下一行的下标 i 或 i + 1 。

2.1 动态规划

class Solution {
public:
    int minimumTotal(vector<vector<int>>& matrix) {
        int n = matrix.size();
        for (int i = 1; i < n; i++) {
            matrix[i][0] += matrix[i - 1][0];
            matrix[i][i] += matrix[i - 1][i - 1];
            for (int j = 1; j < i; j++) {
                matrix[i][j] += min(matrix[i - 1][j - 1], matrix[i - 1][j]);
            }
        }
        return *min_element(matrix[n - 1].begin(), matrix[n - 1].end());
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值