文章目录
前言
今天的每日一题很难,dp很简单……
以后每日一题没理解就不贴了,没什么意义……
1. 下降路径最小和
给你一个 n x n 的 方形 整数数组 matrix ,请你找出并返回通过 matrix 的下降路径 的 最小和 。
下降路径 可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。具体来说,位置 (row, col) 的下一个元素应当是 (row + 1, col - 1)、(row + 1, col) 或者 (row + 1, col + 1) 。
1.1 动态规划(二维数组)
砍刀切菜的难度
class Solution {
public:
int minFallingPathSum(vector<vector<int>>& matrix) {
int n = matrix.size();
for (int i = 1; i < n; i++) {
matrix[i][0] += min(matrix[i - 1][0], matrix[i - 1][1]);
matrix[i][n - 1] += min(matrix[i - 1][n - 2],
matrix[i - 1][n - 1]);
for (int j = 1; j < n - 1; j++) {
matrix[i][j] += min(matrix[i - 1][j],
min(matrix[i - 1][j - 1], matrix[i - 1][j + 1]));
}
}
return *min_element(matrix[n - 1].begin(), matrix[n - 1].end());
}
};
2. 三角形最小路径和
给定一个三角形 triangle ,找出自顶向下的最小路径和。
每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。也就是说,如果正位于当前行的下标 i ,那么下一步可以移动到下一行的下标 i 或 i + 1 。
2.1 动态规划
class Solution {
public:
int minimumTotal(vector<vector<int>>& matrix) {
int n = matrix.size();
for (int i = 1; i < n; i++) {
matrix[i][0] += matrix[i - 1][0];
matrix[i][i] += matrix[i - 1][i - 1];
for (int j = 1; j < i; j++) {
matrix[i][j] += min(matrix[i - 1][j - 1], matrix[i - 1][j]);
}
}
return *min_element(matrix[n - 1].begin(), matrix[n - 1].end());
}
};