秒懂Springboot之如何使用logback做日志脱敏和截取

本文介绍了如何在Springboot项目中利用Logback进行日志的脱敏处理,包括设置消息长度限制、敏感信息替换和正则表达式匹配,以及如何自定义MessageConverter以达到安全审计的目的。
摘要由CSDN通过智能技术生成

[版权申明] 非商业目的注明出处可自由转载
出自:shusheng007

前言

日志的重要性无需多言,而数据的安全性亦不用赘述,但不幸的是它两常常产生矛盾。要便利就会牺牲安全,要安全就会牺牲便利,所以需要找到一个折中的方案:既满足日志方便审计以及查找问题的需求又兼顾安全。这就是我们今天要谈论的日志脱敏的问题。

日志

现在java生态最常使用的几个用来记录日志的技术有:log4j,logback,log4j2 , tinyLog,不过现在我们一般会通过SLF4J来集成日志。SLF4J的意思是Simple Logging Facade for Java,可见其是一个面板,一个日志的抽象层。我们通过SLF4J接入日志后,以后想要更换其他的实现了SLF4J的日志库就比较方便了,无需改动代码。

如下图所示:
在这里插入图片描述
图片出至 logback官方文档

logback

2001年瑞士程序员Ceki Gülcü创建了Log4j,多年后的一天早上起来他决定不玩了,于是 2015又发起了SLF4J和Logback新项目,目标是成为前辈log4j的继任者。但是对于大型互联网系统,选择Log4J2的比较多,因为其性能更加优秀,据说每秒可以写入1千8百万条日志,而logback最多每秒写入200万条日志,其还有非常强大的插件系统。可能就是因为复杂而强大,2021年阿里云发现了零日漏洞,被称为近10年最严重的软件漏洞… 阿里第一时间向Apache基金会报告了此漏洞,却没有向中国信息相关部门报告,最后还被处罚了。

闲话聊的差不多了就,该如正题了。现在由于Springboot 默认集成logback,所以logback越来越流行。所以今天就聊一下如何使用logback进行日志的脱敏和截取。

Logback 被分成三个不同的模块:logback-core,logback-classic,logback-access。我们一般会使用logback-core和logback-classic,logback-access 用来与 Servlet 容器(Tomcat、Jetty)进行整合提供http访问日志的功能。

原理

logback的学习曲线还是比较陡曲的,我第一次接触的时候就被那个配置搞的相当懵逼。相信工作了几年的同学如果没有专门研究过还是感觉无从下手。由于我们这篇文章主要着眼于脱敏和截取,而不是如何使用logback,所以对其如何使用不会说的太详细,有相关需求的可以看官方文档。如果需求特别强烈可以抽时间在写一篇相关文章。

logback里面有几个非常关键的概念:

  • Logger

    日志对象的抽象,负责日志等级,Mark的设置等

  • Appender

    负责将日志输出到不同的目的地,控制台、文件、数据库、网络…

  • Encoder

    顾名思义,它是编码用的。那编什么码呢?Encoder将日志事件转换为字节数组,同时将字节数组写入到一个 OutputStream 中。

  • Layouts

    负责将日志事件转化为格式化的字符串

当输出一个日志logEvent时,其处理流程如下:

Appender ->Encoder->Layout-> Converter

如下图所示。
在这里插入图片描述

日志最后都会经过各种Converter, 所以我们可以在这一步来做文章。

实现原理

在springboot中使用logback的时候,通常会在resource文件下创建一个名为logback-spring.xml的文件。logback配置文件本来的命名为logback.xml,当加上spring后缀猴就可以在logback配置文件中使用spring相关的配置了,这块一会再说。

这里我们做一个最低配置。一个 ConsoleAppender, 一个PatternLayoutEncoder,一个PatternLayout。如下所示:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>

    <appender name="CONSOLE" class="ch.qos.logback.core.ConsoleAppender">
        <encoder>
            <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{40} - %msg%n</pattern>
        </encoder>
    </appender>

    <root level="INFO">
        <appender-ref ref="CONSOLE"/>
    </root>

</configuration>

我们的日志内容的转换是由PatternLayout里的%msg负责的,它其实是配置了一个MessageConverter ,源码非常简单,如下所示。

public class MessageConverter extends ClassicConverter {
    public String convert(ILoggingEvent event) {
        return event.getFormattedMessage();
    }
}

可见MessageConverter 没有做任何日志的转化,直接将获取到的格式化日志直接返回了。 要想对输出的日志做一些脱敏等工作我们就需要实现自己的MessageConverter

方案

我们准备实现如下功能

  • 消息超长截取。例如设置最大长度为1024个字符,超过则截取并在末尾加上一个<<<
  • 敏感信息处理。例如我们可以指定部分字符使用*替换。
  • 匹配深度。这个设计是为了性能,一般也用不上。例如我们认为手机号是敏感信息,很不辛一段日志里面包含了1000个手机号,如果深度设置为200,200以后的手机号就不在按敏感信息处理了。

下面是如何实现:

  1. 继承ClassicConverter,重写其start() 方法。从上面可见这个类也是MessageConverter 的基类。
 @Override
 public void start() {
     List<String> options = getOptionList();
     //从参数选项中提取配置
     if (options != null) {
         try {
             final Integer targetMaxLength = Integer.valueOf(options.get(0));
             ...
         } catch (Exception e) {
             e.printStackTrace();
         }
     }
 }

在此方法内,我们可以通过父类DynamicConvertergetOptionList()获取从外界传入的参数。这些参数包括,最大长度、匹配敏感信息的正则表达式,对敏感信息的处理方式…

  1. 重写DynamicConverterconvert(ILoggingEvent event)方法
 @Override
 public String convert(ILoggingEvent event) {
     String source = event.getFormattedMessage();
     ...

     int length = source.length();
     boolean isOutLengthLimit = length > maxLength;
     if (isOutLengthLimit || replaceMatcher != null) {
         StringBuilder sb = new StringBuilder(isOutLengthLimit ? maxLength + 6 : length + 6);
         //超长截取
         if (isOutLengthLimit) {
             sb.append(source, 0, maxLength)
                     .append("<<<");
         } else {
             sb.append(source);
         }
         if (replaceMatcher != null) {
             return replaceMatcher.execute(sb, PolicyEnum.fromName(policy));
         }
         return sb.toString();
     }
     return source;
 }

当获取到日志消息后,对其长度进行判断,超长则截取。然后构建一个ReplaceMatcher进行正则匹配,脱敏。

  1. 创建一个静态内部类ReplaceMatcher ,这个类是真正干活的类
    public static class ReplaceMatcher {
        private final Pattern pattern;
        private final int depth;
        ...

        public String execute(StringBuilder source, PolicyEnum policy) {
            Matcher matcher = pattern.matcher(source.toString());

            int depthCounter = 0;
            while (matcher.find() && (depthCounter < depth)) {
                depthCounter++;
                int start = matcher.start();
                int end = matcher.end();
                if (start < 0 || end < 0) {
                    break;
                }
                //匹配到的数据
                source.replace(start, end, facade(matcher.group(), policy));
            }
            return source.toString();
        }

        private String facade(String source, PolicyEnum policy) {
            final int length = source.length();
            StringBuilder sb = new StringBuilder(source);
            
            if (policy == REPLACE) {
                if (length > 128) {
                    return sb.replace(3, length - 3, String.format("[%s]", length - 6)).toString();
                }
                if (length > 10) {
                    return sb.replace(3, length - 3, repeat('*', length - 6)).toString();
                }
            }
            ...
            return sb.replace(0, length, repeat('*', length)).toString();
        }
    }

其逻辑也很简单。使用正则表达式去匹配,如果匹配到了就处理。处理的方式我们可以自己指定,文中展示了REPLACE这种方案。

  • 当敏感信息长度大于128个字符时,保留前后3个字符,中间字符使用[省略的长度]来代替。例如 字符串: abc这里省略了200个字符cba 会被替换为abc[200]cba
  • 当长度大于10小于128时,保留前后各三个字符,中间用*替换。例如: 13512341234替换为:135*****234
  • 当小于10,则全部替换为*。例如password替换为********
  1. 如何使用

当完成以上步骤后我们的DesensitizedMessageConverter 就大功告成了。接下来就是怎么让它生效的问题了。

再来看一眼我们的logback的配置文件,其中%msg是在配置其原生的MessageConverter ,我们的目标是要用我们自己的DesensitizedMessageConverter来替换掉MessageConverter ,那怎么弄呢?

...
   <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{40} - %msg%n</pattern>
...    

logback提供了一个叫<coconversionRule >的标签,通过这个标签我们就可以使用自定义的Converter

<configuration>

    <springProperty scope="context" name="LOG_CON_MAX_LIMIT" source="cus-log.properties.max-limit"/>
    <springProperty scope="context" name="LOG_CON_POLICY" source="cus-log.properties.policy"/>
    <springProperty scope="context" name="LOG_CON_REGEX" source="cus-log.properties.regex"/>
    <property name="LOG_CON_DEPTH" value="100"/>

    <property name="LOG_CON_SUM" value="'${LOG_CON_MAX_LIMIT}','${LOG_CON_REGEX}','${LOG_CON_POLICY}','${LOG_CON_DEPTH}'"/>

	<conversionRule conversionWord="dmsg" converterClass="top.ss007.log.cuslog.DesensitizedMessageConverter"/>

		...
		   <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{40} - %dmsg{${LOG_CON_SUM}}%n</pattern>
		...    

</configuration>

首先我们定义DesensitizedMessageConverterconversionWorddmsg,这个随便叫,只有不和logback自己已经使用的重复了就行。然后我们就可以使用dmsg来替换msg了。正常情况下已经OK了,但是我们的Conveter需要传入参数,例如最大长度,正则表达式等,这怎么办呢?

如下所示,只有在dmsg后面使用{}依次传入即可,传几个都可以,但是顺序以及个数是与我们在DesensitizedMessageConverter解析一一对应的,不能瞎传。

%dmsg{p1,p2,p3...}

上文是我通过application.yaml读取了相应的值传到logback里的

cus-log:
  properties:
    max-limit: 1024
    policy: REPLACE
    regex: (?<="password":").*?(?=") #匹配  {"password":"123456"} 中的123456

技术总结

这一套方案看起来不难,但其实要求对Logback有比较全面的理解才能做到,下面我总结几点关键点:

  1. 清楚logback的日志处理流程,确定要对MessageConverter 下手
  2. 清楚如何给Converter传参和如何解析参数
  3. 清楚如何应用自定义的Converter
  4. 会写各种正则表达式

总结

总体来说logback的学习曲线还是比较陡的,由于很多同学参与项目时,日志已经配置好了,平时也不会去改动它,导致很多人工作了很多年对其都不是很了解。不过不了解也不要紧,日志虽然非常非常非常重要,但其具有一旦设定就几乎不改改的特性。但是,技多不压身…

源码

一如既往,你可以从个人博客首发获取源码

以下是使用logback日志数据写入mysql数据库的示例代码: 1. 添加依赖 在pom.xml文件中添加以下依赖: ``` <dependency> <groupId>ch.qos.logback</groupId> <artifactId>logback-classic</artifactId> <version>1.2.3</version> </dependency> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>8.0.25</version> </dependency> ``` 2. 配置logback.xml文件 在src/main/resources目录下创建logback.xml文件,并添加以下配置: ``` <configuration> <appender name="DB" class="ch.qos.logback.classic.db.DBAppender"> <connectionSource class="ch.qos.logback.core.db.DriverManagerConnectionSource"> <driverClass>com.mysql.cj.jdbc.Driver</driverClass> <url>jdbc:mysql://localhost:3306/test?useUnicode=true&characterEncoding=UTF-8&serverTimezone=Asia/Shanghai</url> <user>root</user> <password>123456</password> </connectionSource> <sqlDialect class="ch.qos.logback.core.db.dialect.MySQLDialect"/> <insertHeaders>true</insertHeaders> <bufferSize>1</bufferSize> <tableName>log</tableName> <columnMapping> <column name="timestamp" isTimestamp="true"/> <column name="level" pattern="%level"/> <column name="logger" pattern="%logger"/> <column name="message" pattern="%message"/> </columnMapping> </appender> <root level="info"> <appender-ref ref="DB"/> </root> </configuration> ``` 其中,url、user和password需要根据实际情况修改。 3. 编写测试代码 在Spring Boot应用程序中,可以使用LoggerFactory获取Logger实例,并使用Logger实例记录日志。例如: ``` @RestController public class TestController { private static final Logger logger = LoggerFactory.getLogger(TestController.class); @GetMapping("/test") public String test() { logger.info("This is a test log message."); return "success"; } } ``` 4. 运行测试 启动Spring Boot应用程序,并访问http://localhost:8080/test,可以在mysql数据库中查看到日志数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShuSheng007

亲爱的猿猿,难道你又要白嫖?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值