打靶法(Shooting Method)在Python中的实现(SciPy库的使用)

本文为笔者在学习最优控制问题的传统数值解法——“打靶法”——过程中所做的尝试,因为对Matlab语法不熟悉所以想尝试在Python中实现这些操作,参考了其他大佬们的代码学习到了很多,也希望能给其他人带来帮助。将不定时更新。因为是编程小白所以代码可能会出现错误或者是写得非常不好看,希望大家及时指出交流。所有代码均在Jupyter上编译运行,请大家根据自己搭建的环境更改。

单步直接打靶法Direct Single Step Shooting Method (DSSSM)

参考的最爱大盘鸡大佬的代码:[https://blog.csdn.net/Ruins_LEE/article/details/125680062?spm=1001.2014.3001.5502]

该方法的要点是,离散控制变量,将目标函数、状态变量、约束条件、边界条件等转化为控制变量的函数,进行数值求解。

DSSSM的Python实现

算例

该算例选自《最优化与最优控制》第2版第257页例13.1。

设由状态方程及初始条件 x ˙ = − x 2 + u \dot{x} = - x^{2} + u x˙=x2+u x 0 = 10 x_{0} = 10 x0=10,性能指标 J ( u ) = 0.5 ∫ 0 1 ( x 2 + u 2 ) d t J(u) = 0.5\int_{0}^{1}(x^{2} + u^{2})dt J(u)=0.501(x2+u2)dt,,求解最优控制使 J J J为极小。

import numpy as np
from scipy.optimize import minimize
from scipy.interpolate import interp1d
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt

"""Parameters Setting"""
# 初始参数设置  【使用词典更方便传递多个参数】
system = {'t0': 0, 'tf': 1, 'x_0': 10}
# t0:起始时间  tf:终止时间  x_0:状态变量初值
system['N'] = 20 # 打靶点参数设置
system['t'] = np.linspace(system['t0'], system['tf'], system['N']) #离散化的时间

# 离散控制变量
#system['u_index'] = np.arange(1, system['N'] + 1)

# 先猜测一组控制变量
u_0 = - 0.5 * np.ones(system['N'])
system['u'] = u_0

"""Subfunctions Setting"""
# 定义目标函数
def objective_J(u, p):
    # 使用离散的控制变量计算离散的状态变量
    #使用ode解算器 计算状态变量x
    sol = solve_ivp(lambda t, x: derivative_dx(t, x, p), [p['t0'], p['tf']], [p['x_0']]
                    , t_eval = p['t'])
    x = sol.y.flatten()
    # 计算目标函数值
    L = x ** 2 + u ** 2
    #梯形规则进行积分
    int_L = 0.5 * np.trapz(L, p['t']) 
    return int_L
# 定义状态方程
def derivative_dx(t, x, p):
    # interp1d进行插值
    u_interp = interp1d(p['t'], p['u'], fill_value = "extrapolate")
    u = u_interp(t)
    dxdt = - x ** 2 + u
    return dxdt

"""Solving Algorithm"""
# 求解控制变量
result = minimize(objective_J, u_0, args=(system,), method='SLSQP', options={'disp': True})
# 更新词典里的控制变量
system['u'] = result.x

# 使用ode解算器计算控制变量对应的状态变量
sol = solve_ivp(lambda t, x: derivative_dx(t, x, system), [system['t0'], system['tf']], [system['x_0']]
                , t_eval=system['t'])
system['x'] = sol.y.flatten()

plt.figure(figsize=(10, 5))
plt.plot(system['t'], system['x'], 'x-', label='State $x(t)$', linewidth=1.5)
plt.plot(system['t'], system['u'], 'x-', label='Control $u(t)$', linewidth=1.5)
plt.xlabel('Time')
plt.ylabel('State & Control')
plt.title('State and Control versus Time')
plt.legend()
plt.grid(True)

plt.savefig('DSSSM.png')
plt.show()

运行结果

请添加图片描述

请添加图片描述

  • 22
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
Python,可以使用SciPy的solve_bvp函数来解决二阶微分方程的边值问题,也被称为打靶shooting method)。solve_bvp函数用于求解一阶微分方程(组)的两点边值问题,可以通过将二阶微分方程转化为一阶形式来使用该函数进行求解。具体的使用如下: 1. 首先,定义一个函数,用于描述二阶微分方程。这个函数应该返回一个一阶微分方程的向量表达式,其未知函数的导数是向量的一部分。 2. 然后,定义一个边界条件函数,用于描述问题的边界条件。这个函数应该返回一个数组,其包含问题的边界条件。 3. 接下来,定义问题的自变量范围,并初始化一个与自变量范围相对应的因变量初始猜测。 4. 最后,使用solve_bvp函数来求解边值问题。将前面定义的函数和边界条件函数作为参数传递给solve_bvp函数,并指定自变量范围和初始猜测。 示例代码如下: ``` import numpy as np from scipy.integrate import solve_bvp def fun(x, y): # 定义一阶微分方程的向量表达式 return np.vstack((y = 1 # 初始猜测值 sol = solve_bvp(fun, bc, x, y) # 打印解 print(sol.y<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [转发:Python微分方程边值问题](https://blog.csdn.net/qq_41708281/article/details/124234350)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值