高额回报溢价
SIMON GERVAIS RON KANIEL 和 DAN h. MINGELGRIN
摘要:研究了极端交易活动包含有关股票价格未来演变的信息的想法。我们发现,在一天或一周内交易量异常高(低)的股票往往会在接下来的一个月内升值(贬值)。我们认为,这种高回报溢价与股票交易活动中的冲击会影响其可见性,进而影响该股票的后续需求和价格的观点是一致的。回报自相关、公司公告、市场风险和流动性似乎不能解释我们的结果。
本文的目的是调查交易活动在其包含的有关未来价格的信息方面的作用。 更准确地说,我们对交易量在预测未来价格走势方面的力量感兴趣。 我们发现,交易活动在一天或一周内异常大(小)的个股,以这些时期的交易量衡量,往往会在随后的月份获得大(小)回报。换句话说,股票价格中似乎存在大量回报溢价。图1展示了我们论文结果的本质。在该图中,我们展示了三组股票的平均累积回报的演变:相对于它们的交易量异常高、异常低和正常交易量的股票。近期交易量历史,在投资组合形成日之前的交易日。 我们看到,交易量异常高(低)的股票表现优于(表现优于)交易量正常的股票。此外,这种影响似乎会随着时间的推移而增长,尤其是对于大批量股票。
图1:平均累计回报图(以一日交易量冲击为条件的股票平均累积回报的演变。在1963年8月至1996年12 月之间的每第 50 个交易日结束时,根据每只股票在该日的交易量(以交易的股票数量来衡量)形成等权重的投资组合。 当日交易量在过去 50 个交易日的最高(最低)五个日交易量中的股票被归类为“高交易量”(“低交易量”)股票;否则,它被归类为“正常成交量”股票。该图绘制了三个投资组合的平均累积回报。)
我们假设高成交量溢价是由于交易者对特定股票的兴趣受到冲击,即股票的可见性。Miller(1977)和Mayshar(1983)声称,平均而言,特定股票的持有者往往对其前景最为乐观。如果机构对卖空的限制使得在股票中采取负头寸变得困难,则尤其如此。此外,根据这些作者的说法,任何引起投资者对特定股票的关注的冲击都应该导致随后的价格上涨,因为潜在买家的集合包括市场的大部分,而潜在卖家的集合主要是 仅限于现有股东。同样,Arbel和Strebel(1982)、Arbel(1985)和Merton(1987)认为,股票市场上额外的分析师和交易员的到来应该增加其价值,因为这降低了交易员面临的估计风险并促进 之间的风险分担。 如果以交易量冲击衡量的交易活动冲击通过新闻、口口相传或最近的互联网等各种沟通渠道影响潜在投资者的资金池,我们的结果如下。
我们通过证明高交易量回报溢价不是交易量对回报自相关的影响的简单副产品,加强了这种可见性假设的合理性。 事实上,这种溢价对于在异常交易量时几乎没有或没有价格变化的股票同样普遍。换句话说,成交量冲击不需要价格变动来预测未来回报。从这个意义上说,我们的分析补充了Conrad、Hamid和Niden(1994)和Cooper(1999)的分析,他们记录了这样一个事实,即Lehmann (1990)逆向投资策略的表现会受到影响时,除了过去的回报之外,还有一个条件是过去的交易量。我们还发现,高交易量回报溢价不仅仅是代表Jegadeesh和 Titman(1993)记录的动量效应。事实上,回报主要不是由过去的赢家产生的积极的交易量冲击和过去的输家产生的负面交易量冲击。相反,我们发现过去的失败者更有可能脱离投资者的视线,尤其受到交易量冲击的影响。此外,对于这些股票,正成交量冲击的影响在幅度上与负成交量冲击的影响相似。
鉴于交易量具有惊人的预测随后价格变化的能力,我们对结果进行了一些其他潜在的解释。从Beaver(1968)对收益公告的研究开始,人们经常认为收益和股息公告伴随着价格和交易量的异常变化。 特别是,Bamber和Cheon(1995)记录了这样一个事实,即伴随着大交易量但小价格变化的收益公告往往伴随着价格上涨。为了减轻公司公告可以解释大量溢价的可能性,我们表明去除收益和股息公告周围的时期不会影响我们的结果。 系统风险似乎也不能解释我们的结果。 事实上,刚刚经历异常高成交量的股票的贝塔系数与经历了异常低成交量的股票的贝塔系数之间没有明显区别。类似地,Amihud 和 Mendelson (1986) 做出的低流动性(如大买卖价差所代表)应该与大预期回报相关联的预测被拒绝,因为我们基于交易量的策略的回报无法由股票的买卖价差。
最后,高交易量回报溢价不取决于交易量的衡量方式:股票交易量、美元交易量、去趋势交易量和公司特定交易量都会产生相同的结果。
据我们所知,使用交易量作为未来价格的唯一预测指标只有 Ying (1966) 研究过,他表明纽约证券交易所 (NYSE) 的每日交易量的增加(减少)往往会随之而来 标普 500 综合指数的价格上涨(下跌)。本文在许多重要方向上扩展了 Ying 的工作。首先,我们研究了超过 30 年(而不是 6 年)对个股(而不是市场指数)的成交量影响。其次,我们为这些结果提供了几种替代解释的测试,Ying 没有建议或分析这些解释。 最后,我们不仅评估结果的统计显着性,还评估其经济显着性。
我们的论文的结构安排如下。在下一节中,我们将描述我们的主要假设、数据和用于测试它的投资组合形成程序。我们的主要结果以及它们与现有的回报自动相关性研究的关系在第二节中介绍。本节还研究了股票可见性,以此作为对大量回报溢价的潜在解释。在第三节中,我们展示了许多其他替代假设无法解释我们的结果。第四部分提供了额外的证据,证明能见度效应可能推动了结果,并提出了进一步研究这一假设的其他途径。最后,为了衡量高交易量回报溢价的经济重要性,我们在第五部分研究了基于交易量的策略的盈利能力。总结性评论在论文的最后一部分给出。
一、方法
A. 主要假设
我们的第一个目标是测试交易量在预测股票收益方面是否有任何信息作用。我们尤其感兴趣的是研究个别股票的交易活动与该股票未来价格演变之间的关系。有效市场假说预测,交易量不应该具有任何超出适当风险度量的预测能力。这是本文测试的主要假设。
米勒1977和 Mayshar1983他们认为,如果交易员对一支股票的价值有不同的看法,那么最终持有该股票的交易员对其价值最为乐观。他们进一步指出,如果股票的供应由于卖空的限制而受到限制,悲观交易者的意见将不能被纳入股票价格,这只能反映股东的乐观意见。在这种情况下,任何关注特定股票的人数的正面冲击。即,任何股票可见性的增加增加潜在买家的数量,但保持潜在卖家的数量基本不变。 例如,如果卖空是不可能的,潜在卖家只包括当前的股东.这往往会提高股票的价格。例如,这可以说是 Shleifer1986的效应当他证明仅仅是将一只股票纳入标准普尔500指数就会导致其价格上涨时,他的文件。作为我们主要假设的替代,我们推测股票交易活动的冲击会影响其可见性,并随之影响其价格。这个可见性假说的本质实际上在 Miller 的1977中得到了体现结论:
从理论上讲,高成交量并不意味着股票会上涨它可能是由于大量抛售造成的仅仅观察大量交易不应该导致任何人买进。然而,如果成交量确实吸引了人们的注意力,并引起更多人关注某只股票,一些人可能会说服自己应该购买该股票。
能见度可能会影响股票价格的观点并不局限于上述文章。Arbel 和 Strebel1982还有 Arbel1985认为那些被金融分析师忽视的股票应该平均产生更大的风险调整回报,即以更低的价格卖出因为投资者面临更大的参数估计风险。Bernardo 和 Judd 1996发展一个模型来证实这种直觉。他们表明,正如过去的回报帮助交易员更新他们对预期回报的信念,交易量使他们能够更新他们对这些回报风险的信念。这种与大量交易量相关的不确定性的进一步解决,导致厌恶风险的交易者在后期推高股票价格。同样,Merton 1987发展了一个一般均衡模型,在这个模型中,被大部分投资者忽视的股票与其他类似的股票相比,往往会折价出售,因为总体风险会被更少的代理人吸收。所有这些作者都认为,在这种情况下,即使在没有新闻的情况下,为自己的股票做广告也是一种可行的策略,因为这只会增加投资者基础,进而提高股价。因此,这些作者认为,如果交易活动中的正面冲击通过新闻、口碑或其他沟通渠道给公司带来了投资者兴趣上的冲击,那么我们应该预计随后会观察到股票价格的上涨。
我们对交易量的假设角色是新颖的,因为我们观察交易量在预测方向性价格变化中的跨时间角色。交易量和价格之间的同时关系已经被很好地记录了下来。Epp1975发展了一个模型,证明了华尔街的古老格言——牛市伴随着大的交易量并不是没有根据的,这个结论在 Copeland 1976的模型中得到了加强Tauchen 和 Pitts 1983卡尔波夫1986.模型的预测被 Smirlock 和 Starks 证明是经验上成立的1985哈里斯1986,1987文献的另一部分认为,当前的交易量应该决定未来收益自相关性和波动性的强度。例如,Harris 和 Raviv 1993和 Shalen 1993显示大的交易量倾向于宣布大的后续绝对价格变化,即高波动性。同样,Campbell,Grossman,and Wang1993证明了当交易的主要动机是流动性需求时,大的交易量会导致负的回报自相关。Wang1994另一方面,如果投机是交易的主要动机,那么这些自相关性将是正的。这最后两个预测已经成为许多关于交易量的实证研究的焦点,包括坎贝尔等人1993康拉德等,1994Llorente 等人1998
图2.每日 CRSP 样品的时间序列。161个交易间隔中的每个交易间隔由50个交易日组成。在每个交易间隔中,前49天用来衡量最后一天的交易量是否异常的大,最多占交易间隔期间日交易量的10% 或者小的占底部的10% .基于这种度量方法,投资组合在最后一天结束时形成,并在随后的1、10、20、50或100天内评估它们的业绩(这里描述了50天)
Lee 和 Swaminathan 1999和 Cooper 1999.这项工作背后的想法是首先确定大正周期或负周期价格变动伴随着大的交易量,然后观察随后的价格变动。看看现有的证据,Cooper1999得出的结论是,高交易量的时期在较小的较大的股票似乎预示着流动性投机性交易,如随后的回报反转所示延续
B. 资料
我们的两个主要样本使用了来自证券价格研究中心股票数据库的纽约证券交易所股票数据CRSP从1963年8月到1996年12月。在这一部分,我们将详细描述每日样本; 每周样本,这是类似的构造,简要描述后来。我们通过将1963年8月15日至1996年12月31日之间的时间间隔分解为161个50个交易日的非交叉交易间隔来构造每日样本。由于以后会明确的原因,我们避免在每个交易间隔中使用每周的同一天作为每个交易间隔的最后一天,在每个交易间隔中跳过一天。我们还放弃了1968年下半年的所有数据,因为该交易所在星期三休市,影响了以下交易量的衡量标准。这个时间序列,连同本节后面介绍的一些术语,如图2所示。
每个交易区间分为一个参考期和一个形成期,分别包括区间的前49天和最后一天。参考期是用来衡量异常大小的交易量是在形成期。交易的股票数量
是用来衡量交易量的。在给定的交易间隔内,一只股票被归类为高-低-成交量如果其形成期成交量在顶部底部之间每日50成交量中的5成,即该交易区间的前10% 。否则,它被归类为正常成交量股票。在形成期结束时在形成日我们根据该交易间隔的股票交易量分类形成投资组合。我们使用两种不同的投资组合形成程序,描述如下: 零投资组合和参考回报组合。在投资组合形成之后,它们在测试期间(包括随后的1、10、20、50或100个交易日)没有任何再平衡。
所有现有的纽约证券交易所普通股在每个交易间隔都会被考虑。然而,在每一个交易间隔中,我们都会剔除一些数据缺失的股票。同样从交易间隔中剔除的,是公司在组建期之前或之前一年内经历合并、退市、部分清算或二次发售的股票。在交易间隔开始时,在纽约证券交易所交易历史少于一年的股票也同样从交易间隔中被丢弃。最后,我们从一个交易间隔中剔除在该交易间隔的前49天某个时间点价格低于5美元的股票。5每个交易间隔中的每只剩余股票根据公司在成立期前一年年底的市值十分位数被分配到三个规模组中的一个: 市值十分位数的公司被分配到大公司组,市值十分位数的公司被分配到六到八个十分位数的公司被分配到中等公司组,市值十分位数的公司被分配到二到五个十分位数的公司被分配到小公司组。我们忽略了十分之一的公司,因为这些公司中的大多数都无法通过上述过滤。因为 Blume,Easley 和 o’hara 1994假设大公司的交易量属性与小公司的交易量属性不同,则分别对这些规模组进行分析。这也允许我们评估结果的稳健性。
有些股票,特别是小公司的股票,经历了许多天没有任何交易。事实上,这就是为什么我们把所有的股票都从下面的第一个十分位数下调。尽管如此,在某些情况下,一只股票在形成期间没有任何交易活动的非交易日数可能在一个参考期内超过4天。在这种情况下,我们不会自动将该股票归类为低成交量股票,因为平均而言,该股票有超过10% 的时间会归入低成交量股票类别。相反,如果我们让 n 表示参考期内的非交易日数,其中 n。4对于一只在形成期间没有交易的股票,我们将其随机分类为低成交量股票,概率为50n11请注意,我们也重复了我们的分析,没有股票没有交易活动 即零交易量在形成期间。由于这只是减少了2.67% ,0.89% 和0.11% 的小型,中型和大型公司的样本,结果没有受到影响。
例如,如果一只股票的交易量在50天的交易间隔内的任何一天在 CRSP 中丢失,我们只需从该交易间隔中删除该股票。
排除低价股票可以减少买卖反弹和价格离散导致的潜在偏差,Blume 和 Stambaugh1983已经对此进行了描述Conrad 和 Kaul1993等等。
根据上述分类,对于161个交易区间中的每一个交易区间,我们有三个规模的股票组,每个股票根据相对于参考期的形成期的交易量进行分类。表 i 列出了我们每日 CRSP 样本的一些描述统计学。面板 a 显示了这些统计数据跨所有股票和交易间隔为三个规模组。我们从这个小组中看到,毫不奇怪,小公司集团的股票价格和交易量低于中型和大型公司集团的股票。表1的 b 和 c 小组通过显示第一个和最后一个交易间隔的价格和交易量来说明交易间隔的一般演变。尽管多年来所有规模集团的交易量都在增加,但对于大公司来说,这种变化显然更为显著。最后,面板 d 显示了在每个交易区间被分类为高成交量和低成交量股票的数量的统计数据。最后一个面板的一个有趣的方面是在不同的交易间隔内高成交量和低成交量股票的数量之间的负相关。这反映了这样一个事实,即交易量冲击往往是相互关联的股票; 也就是说,似乎有一个市场成分的交易量。这可能对我们的结果产生的影响将在后面讨论。
第二个样本,即每周样本,使用了从周三收盘到下周三收盘的一周内的每日数据。对于这个样本,每个交易间隔由10周组成,总共50个交易日其中前9个被称为参考期,后1个被称为形成期。我们也跳过每个交易间隔一周,结果,我们总共有155个这样的交易间隔。每个交易周期内的每只股票再次根据交易量和交易规模进行分类。如果一只股票在交易间隔的最后一周的交易量代表顶部底部10周间隔的每周成交量,我们将该股分类为高-低-在该区间内的成交量。否则,该股票被归类为普通成交量股票。这个每周样本的样本统计数据在这里没有显示,因为它们类似于表 i 中每日样本的统计数据。
C. 投资组合的形成
我们研究了交易量对未来收益的影响,通过在每个形成期末使用上述交易量分类形成港口证券组合。特别是,我们试图检验交易量不包含任何有关未来价格的方向信息的无效假设。这是针对大小的可能性进行的测试交易量预测高低回报。为此,我们介绍了两种投资组合的形成方法。
在每个成立日,我们建立一个零投资组合,即在所有高交易量股票中总共持有1美元的多头仓位,在所有低交易量股票中总共持有1美元的空头仓位。
每日 CRSP 样本的描述统计学
每日 CRSP 样本由161个不重叠的交易间隔组成,每个交易间隔为50天。对于每个区间,股票根据其在形成期之前的年底的市场资本化十分位数被分为三个大小组之一。市场资本化十分位数的第九和第十个公司被分配给大公司集团,第六到第八个十分位数的公司被分配给中等公司集团,第二到第五个十分位数的公司被分配给小公司集团。成交量表示每只股票每天交易的股票数量。面板a中的平均数和中位数取决于所有交易间隔的所有交易日。面板b和面板c中的交易日是这些特定交易间隔的交易日。面板d显示了在每个交易