题目描述:
给定 nn 个正整数 aiai,将每个数分解质因数,并按照质因数从小到大的顺序输出每个质因数的底数和指数。
输入格式
第一行包含整数 nn。
接下来 nn 行,每行包含一个正整数 aiai。
输出格式
对于每个正整数 aiai,按照从小到大的顺序输出其分解质因数后,每个质因数的底数和指数,每个底数和指数占一行。
每个正整数的质因数全部输出完毕后,输出一个空行。
数据范围
1≤n≤1001≤n≤100,
2≤ai≤2×1092≤ai≤2×109
输入样例:
2
6
8
输出样例:
2 1
3 1
2 3
#include<iostream>
using namespace std;
void function(int);
int main(){
int n;
cin>>n;
for(int i=0;i<n;i++){
int ans;
cin>>ans;
function(ans);
}
return 0;
}
void function(int n){
//i<=n/i 是上一题判断质数用到的 比i<sqrt(n)更好
for(int i=2;i<=n/i;i++){
/*
* 这里i一定是一个质数
* 原因:根据算数基本定理,一个合数一定可以转化为多个质因数的积
* 对于i,如果i是一个合数,那么它一定可以转化为多个质因数的积,但i<n,对于n%i==0,i的质因数一定是n的质因数
* 而while(n%i==0)将i的质因数完全除尽,故i一定是质数
*/
if(n%i==0){
int s=0;
while(n%i==0){
s++;
n/=i;
}
cout<<i<<" "<<s<<endl;
}
}
//如果剩余的数还是大于一的,意味着存在某个质因数>sqrt(n),或者说这个数本身就是质数
//对于前者,由于只存在一个质因数>sqrt(n),所以和后者一样直接输出就可以了
if(n>1) cout<<n<<" "<<"1"<<endl;
return ;
}