Acwing_算法基础_数学知识_分解质因数

题目描述:

给定 nn 个正整数 aiai,将每个数分解质因数,并按照质因数从小到大的顺序输出每个质因数的底数和指数。

输入格式

第一行包含整数 nn。

接下来 nn 行,每行包含一个正整数 aiai。

输出格式

对于每个正整数 aiai,按照从小到大的顺序输出其分解质因数后,每个质因数的底数和指数,每个底数和指数占一行。

每个正整数的质因数全部输出完毕后,输出一个空行。

数据范围

1≤n≤1001≤n≤100,
2≤ai≤2×1092≤ai≤2×109

输入样例:

2
6
8

输出样例:

2 1
3 1

2 3
#include<iostream>
using namespace std;
void function(int);
int main(){
    int n;
    cin>>n;
    for(int i=0;i<n;i++){
        int ans;
        cin>>ans;
        function(ans);
    }
    return 0;
}
void function(int n){
    //i<=n/i 是上一题判断质数用到的 比i<sqrt(n)更好
    for(int i=2;i<=n/i;i++){
        /*
         * 这里i一定是一个质数
         * 原因:根据算数基本定理,一个合数一定可以转化为多个质因数的积
         * 对于i,如果i是一个合数,那么它一定可以转化为多个质因数的积,但i<n,对于n%i==0,i的质因数一定是n的质因数
         * 而while(n%i==0)将i的质因数完全除尽,故i一定是质数
         */
        if(n%i==0){
            int s=0;
            while(n%i==0){
                s++;
                n/=i;
            }
            cout<<i<<" "<<s<<endl;
        }
    }
    //如果剩余的数还是大于一的,意味着存在某个质因数>sqrt(n),或者说这个数本身就是质数
    //对于前者,由于只存在一个质因数>sqrt(n),所以和后者一样直接输出就可以了
    if(n>1) cout<<n<<" "<<"1"<<endl;
    return ;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值