题解 P1439 【【模板】最长公共子序列】

本文探讨了如何通过离散化和栈的技巧优化求解最长公共子序列问题(LCS),将其转化为最长递增子序列(LIS)的求解,从而降低时间复杂度,适用于大规模数据。通过映射和栈操作简化问题,展示了在10^5数据规模下的高效解决方案。
摘要由CSDN通过智能技术生成

一.简朴的DP

看到这个题的时候,我首先就准备直接用DP模板(水平有限)。

代码如下: 是求 LCS的简朴版

**LCS:Longest Common Subsequence 最长公共子序列**

#include<iostream>
using namespace std;
const int N=1010;
int n;
int a[N],b[N];
int f[N][N];
int main()
{
	cin>>n;
	for(int i=1;i<=n;i++)scanf("%d",&a[i]);
	for(int i=1;i<=n;i++)scanf("%d",&b[i]);
	
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=n;j++)
		{
			f[i][j]=max(f[i-1][j],f[i][j-1]);
			if(a[i]==b[j])
			{
				f[i][j]=max(f[i][j],f[i-1][j-1]+1);
			}
		}
	}
	cout<<f[n][n]<<endl;
	return 0;
}

因为是n平方的时间复杂度,所以在10^5的数据规模下,必会TLE。

所以要寻找其他方法。

二.离散化

题中所说每个序列是1-N的一个排列,所以可以知道,P1和P2两个序列 **元素相同,排列不同** 。

那么我就可以利用离散化(叫映射更合理一点?),将P1中的元素(记为a1,a2,a3……an)映射为(1,2,3,……,n)。

很明显,这是一个严格单调递增符合题条件的序列。

利用同样的映射关系,把P2序列也转化一下,将转化后的序列记为(b1,b2,b3……bn)。

因为P1严格单调递增,那么,求映射后的P1,P2的LCS,不就是求P2的LIS嘛?

**LIS:Longest Increasing Subsequence,最长递增子序列**

三.栈的使用

这个方法的链接在这里 栈求LIS

求一个序列的LIS,也可以DP,但因为时间复杂度也是n的平方,所以我们使用二分。

利用一个单调递增的栈,不断更新栈中序列,最后留下的序列的大小就是原序列LIS的大小。但是,留下的序列不是LIS

栈中序列虽然递增,但是每个元素在原串中对应的位置其实可能是乱的,那为什么这个栈还能用于计算最长子序列长度?


实际上这个栈不用于记录最终的最长子序列,而是以stk[i]结尾的子串长度最长为i或者说长度为i的递增子串中,末尾元素最小的是stk[i]

理解了这个问题以后就知道为什么新进来的元素要不就在末尾增加,要不就替代第一个大于等于它元素的位置(lower_bound函数的作用)


这里的  替换  就蕴含了一个贪心的思想,对于同样长度的子串,我当然希望它的末端越小越好,这样以后我也有更多机会拓展。

四.最终代码

#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;

const int N=100010;
int map[N],a[N],b[N];
int main()
{
	int n;
	cin>>n;
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
		map[a[i]]=i;
	}
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&b[i]);
		b[i]=map[b[i]];
	}
	vector<int>stk;
	
	stk.push_back(b[1]);
	
	for(int i=2;i<=n;i++)
	{
		if(b[i]>stk.back())
		{
			stk.push_back(b[i]);
		}else
		{
			*lower_bound(stk.begin(),stk.end(),b[i])=b[i];
		}
	}
	cout<<stk.size()<<endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值