优先级队列
寻优先级访问:根据数据对象间相对优先级对其进行访问的方式。
优先级队列:按照约定好的优先级,可以始终高效查找并访问优先级最高数据项的数据结构。
- 把n个终端结点加入优先队列,则n个结点都有一个优先权Pi (1<= i < n)
- 如果队列内的节点数大于1,则
(1)从队列中移除权重最小的两个结点
(2)由(1)中的两个结点产生一个新节点,作为(1)中两个结点的父结点,权值为(1)中两个结点权值的和
(3)把(2)中产生的新节点加入到优先队列中 - 最后在优先队列中的点为树的根节点。
HuffmanTree GenerateTree(HuffmanForest forest)
{
while(forest.size > 1)
{
HuffmanTree t1 = forest.DeletMin();
HuffmanTree t2 = forent.DeletMin();
HuffmanTree t3 = new HuffmanTree();
t3.weight = t1.weight + t2.weight;
t3.left = t1;
t3.right = t2;
}
HuffmanTree root = forest.DeletMin();
return root;
}
完全二叉堆:
1. 逻辑结构等同于完全二叉树
2. 堆顶以外的每个结点都不高/低(大/小)于其父结点
大(小)顶堆:优先级最高(底)的结点处于堆顶。
二叉堆一般用数组表示,如果堆顶元素的秩为0,则第i个元素的左右孩子的秩为 2i+1 和 2i+2,其父结点为 floor((i-1)/2)。
串(string)
结构简单,规模庞大,元素重复率高。
字串:字符串中任意连续的片段
空串和字符串自身是该字符串的平凡子串、平凡前缀和平凡后缀,除此之外的字串为该字符串的真子串、真前缀和真后缀。
int[] BuildNext(char[] W)
{
int i = 0;
int j = -1;
int[] T = new int[W.Length];
T[0] = -1;
while(i < W.Length)
{
if(j < 0 || T[i] == T[j])
{
i++;
j++;
if(W[i] != W[j])
{
T[i] = j;
}
else
{
T[i] = T[j];
}
}
else
{
j = T[j];
}
}
return T;
}
int KMPMatch(char[] str, char[] subStr)
{
if(sbuStr == null || subStr.Length > str.Length)
{
return -1;
}
int i = 0;
int j = 0;
int[] next = BuildNext(subStr);
while(i < str.Length && j < subStr.Length)
{
if(j<0 || str[i] == subStr[j])
{
i++;
j++;
}
else
{
j = next[j];
}
}
return i - j;
}
(BM的好后缀没太想明白,眼皮已经打仗了,先存档。。。)