Day19

9 篇文章 0 订阅
1 篇文章 0 订阅

优先级队列

寻优先级访问:根据数据对象间相对优先级对其进行访问的方式。
优先级队列:按照约定好的优先级,可以始终高效查找并访问优先级最高数据项的数据结构。

Huffman编码 Wikipedia

  1. 把n个终端结点加入优先队列,则n个结点都有一个优先权Pi (1<= i < n)
  2. 如果队列内的节点数大于1,则
    (1)从队列中移除权重最小的两个结点
    (2)由(1)中的两个结点产生一个新节点,作为(1)中两个结点的父结点,权值为(1)中两个结点权值的和
    (3)把(2)中产生的新节点加入到优先队列中
  3. 最后在优先队列中的点为树的根节点。
HuffmanTree GenerateTree(HuffmanForest forest)
{
    while(forest.size > 1)
    {
        HuffmanTree t1 = forest.DeletMin();
        HuffmanTree t2 = forent.DeletMin();
        HuffmanTree t3 = new HuffmanTree();
        t3.weight = t1.weight + t2.weight;
        t3.left = t1;
        t3.right = t2;
    }
    HuffmanTree root = forest.DeletMin();
    return root;
}

完全二叉堆:
1. 逻辑结构等同于完全二叉树
2. 堆顶以外的每个结点都不高/低(大/小)于其父结点

大(小)顶堆:优先级最高(底)的结点处于堆顶。

二叉堆一般用数组表示,如果堆顶元素的秩为0,则第i个元素的左右孩子的秩为 2i+1 和 2i+2,其父结点为 floor((i-1)/2)。

二叉堆 WikiPedia

串(string)
结构简单,规模庞大,元素重复率高。
字串:字符串中任意连续的片段
空串和字符串自身是该字符串的平凡子串、平凡前缀和平凡后缀,除此之外的字串为该字符串的真子串、真前缀和真后缀。

KMP算法 WikiPedia

int[] BuildNext(char[] W)
{
    int i = 0;
    int j = -1;
    int[] T = new int[W.Length];
    T[0] = -1;
    while(i < W.Length)
    {
        if(j < 0 || T[i] == T[j])
        {
            i++;
            j++;
            if(W[i] != W[j])
            {
                T[i] = j;   
            }
            else
            {
                T[i] = T[j];
            }
        }
        else
        {
            j = T[j];
        }
    }
    return T;
}

int KMPMatch(char[] str, char[] subStr)
{
    if(sbuStr == null || subStr.Length > str.Length)
    {
        return -1;
    }
    int i = 0;
    int j = 0;
    int[] next = BuildNext(subStr);
    while(i < str.Length && j < subStr.Length)
    {
        if(j<0 || str[i] == subStr[j])
        {
            i++;
            j++;
        }
        else
        {
            j = next[j];
        }
    }
    return i - j;
}

BM算法 WikiPedia

(BM的好后缀没太想明白,眼皮已经打仗了,先存档。。。)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值