2021 CVPR
零、ABSTRACT
FSL(小样本学习策略):从base(见过的类别)迁移到novel(没见过的类别)
本文提出了一种新的方法来解释小样本识别,实验证明可以在两个主流数据集上得到令人满意的结果
一、INTRODUCTION
小样本可以解决数据获取和标注的沉重负担,应对缺少案例或者数据获取开销很大的情况
当novel类别和base类别具有很显著的视觉不同时,这种从输入图片中提取特征的方法可能效果甚微
同时我们不知道哪些视觉不同是对小样本模型意义重大的
因此,希望能看到什么是小样本学习真正迁移的
大部分工作只把卷积神经网络当作图片嵌入工具,而没有关注提取特征的原因
本文重新设计了小样本学习知识提取的机制,符合人类辨认少见物体的思路:寻找一些见过的部分
采用