【2kw的文献笔记】MTUNet: Few-shot Image Classification with Visual Explanations(2024.2.26-27读)

2021 CVPR

零、ABSTRACT

FSL(小样本学习策略):从base(见过的类别)迁移到novel(没见过的类别)

本文提出了一种新的方法来解释小样本识别,实验证明可以在两个主流数据集上得到令人满意的结果

一、INTRODUCTION

小样本可以解决数据获取和标注的沉重负担,应对缺少案例或者数据获取开销很大的情况

当novel类别和base类别具有很显著的视觉不同时,这种从输入图片中提取特征的方法可能效果甚微

同时我们不知道哪些视觉不同是对小样本模型意义重大的

因此,希望能看到什么是小样本学习真正迁移的

大部分工作只把卷积神经网络当作图片嵌入工具,而没有关注提取特征的原因

本文重新设计了小样本学习知识提取的机制,符合人类辨认少见物体的思路:寻找一些见过的部分

采用

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值