python数据分析课程笔记 | 第五章 Python统计分析(上)

本文介绍了描述性统计分析的关键概念,包括基本统计学概念如总体与样本,统计量如均值、标准差、中位数等,以及离散程度的衡量。此外,详细讲解了点估计与区间估计,通过实例展示了如何利用样本数据进行点估计,并应用中心极限定理进行95%置信区间的计算。接着,文章概述了假设检验的基本步骤,并给出了单样本和双样本t检验的Python实现示例。
摘要由CSDN通过智能技术生成

5.1 描述性统计分析

(1)基本统计学概念

  • 总体
  • 样本

(2)统计量

可以在一定程度上反应总体的特征,从样本数据中计算得到,常见统计量包括:

  • 均值
  • 标准差
  • 中位数
  • 分位数
  • 众数

(3)离散程度

统计量可以对数据有个大体的认识,仅反应了数据的某些趋势,常见的离散程度有:

  • 极差
  • 四分位差
  • 方差
  • 变异系数
import pandas as pd
import os

os.chdir(r'C:\Users\Administrator.DESKTOP-0L8IC5U\Desktop\数据分析\data')
insuance = pd.read_csv('train.csv', encoding='utf-8', dtype={
   'Gender': 'str'})

a = insuance['Age'].mean()
b = insuance['Age'].std()
c = insuance['Age'].median()
d = insuance['Age'].quantile([0, 0.05, 0.25, 0.5, 0.75])
print(a, '\n', b, '\n', c, '\n', d
一. 课程介绍本课程结合Python进行统计与数据分析的原理讲解与实战,涵盖了大部分统计&数据分析模型,特别是当前比较主流的算法:参数估计、假设检验、线性回归、广义线性回归、Lasso、岭回归、广义可加模型、回归样条等;机器学习经常用到的主成分分析、因子分析、典型相关分析、聚类分析等;各种非参数统计模型,包括非参数统计推断、尺度推断、位置推断、非参数核密度估计、非参数回归等。本课程主要针对有一定Python编程基础、即将毕业参加工作的的大三大四学生,或者已经参加工作需要提升自己数据分析能力以及转行从事IT行业尤其是数据&大数据分析工作的初入职场者,或者正在攻读硕博士学位需要学习和掌握量化研究方法的研究生。本课程对于即将从事机器学习、深度学习&人工智能相关工作的程序员也有很大帮助,有利于打好坚实的理论基础。二. 课程目录第0章 课程导学第1章 数据描述性分析1.1 描述统计量1.2 数据的分布1.3 概率分布函数的图形1.4 直方图、经验分布函数与QQ图1.5 多元数据的数据特征与相关性分析1.6 多元数据的基本图形表示第2章 参数估计2.1 点估计2.2 区间估计第3章 假设检验3.1 基本原理3.2 参数检验第4章 回归分析4.1 回归分析的概念与一元线性回归4.2 多元线性回归及统计量解析4.3 逐步回归与模型选择4.4 回归诊断4.5 广义线性回归4.6 非线性回归第5章 方差分析5.1 单因素方差分析5.2 双因素方差分析第6章 判别分析与聚类分析6.1 判别分析6.2 聚类分析第7章 主成分分析、因子分析与典型相关分析7.1 主成分分析7.2 因子分析7.3 典型相关分析第8章 非参数统计8.1 经验分布和分布探索8.2 单样本非参数统计推断8.3 两独立样本的位置与尺度判断8.4 多组数据位置推断8.5 分类数据的关联分析8.6 秩相关与分位数回归8.7 非参数密度估计8.8 一元非参数回归三. 讲师简介主讲人李进华博士,本、硕、博皆就读于武汉大学信息管理学院,2005年获博士学位进入211高校任教,2012年受聘为教授。从事信息管理与数据分析方面的教学、科研与系统开发工作20余年,具备深厚理论修养和丰富实战经验。是中国最早从事Java开发的程序员和Oracle数据库的DBA之一。曾带领团队开发《葛洲坝集团三峡工程指挥中心三期工程施工管理系统》、《湖北省财政厅国有企事业单位资产管理系统》等大型MIS。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值