猴子吃桃问题:用递归逆向推导的经典案例

问题描述

一只猴子第一天摘下若干桃子,当天吃掉一半后又多吃一个。之后每天它都重复这一行为:吃掉前一天剩余桃子的一半,再多吃一个。到了第10天时,发现只剩下1个桃子。
问:猴子第一天摘了多少个桃子?


解题思路

本题需要通过逆向推导解决。已知第10天剩余1个桃子,可以通过递推公式计算前一天的桃子数:
第n天的桃子数 = (第n+1天的桃子数 + 1) × 2
例如:

  • 第10天有1个桃子;

  • 第9天有 (1 + 1) × 2 = 4 个;

  • 第8天有 (4 + 1) × 2 = 10 个;

  • 以此类推,直到第一天。


递归算法实现

采用递归思想,从第1天递推到第10天,逐步逆向求解。
Java代码:

public class PeachProblem {
    public static void main(String[] args) {
        System.out.println("第一天摘了 " + calculatePeach(1) + " 个桃子");
    }

    /**
     * 递归计算第n天的桃子数量
     * @param n 当前天数
     * @return 第n天的桃子总数
     */
    public static int calculatePeach(int n) {
        if (n == 10) {
            return 1; // 第10天只剩1个桃子
        } else {
            // 递推公式:当前天数桃子数 = 2 × (下一天的桃子数 + 1)
            return 2 * calculatePeach(n + 1) + 2;
        }
    }
}

代码解析

  1. 递归终止条件:当计算到第10天时,直接返回1。

  2. 递推公式2 * calculatePeach(n + 1) + 2,等价于逆向推导公式 (下一天桃子数 + 1) × 2

  3. 时间复杂度:O(n),递归深度为10层,效率较高。


迭代方法拓展

除了递归,还可以用循环实现:

public static int calculateByLoop() {
    int peach = 1; // 第10天的桃子数
    for (int day = 9; day >= 1; day--) {
        peach = 2 * (peach + 1);
    }
    return peach;
}

两种方法结果一致,均输出1534,但迭代法空间复杂度更低(O(1))。


验证推导过程

通过表格展示每一天的桃子数量变化:

天数剩余桃子数计算公式
101-
94(1 + 1) × 2 = 4
810(4 + 1) × 2 = 10
.........
11534(766 + 1) × 2 = 1534

总结

  1. 逆向思维是解决此类问题的关键,通过已知结果反推初始值。

  2. 递归和迭代均可实现,递归代码简洁,迭代效率更优。

  3. 该问题可扩展为“第n天剩余m个桃子”的通用解法,只需调整终止条件。


标签: Java算法 递归与递推 经典编程题
讨论: 你还能用其他方法(如数学公式)解决这个问题吗?欢迎在评论区分享你的思路!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值