MATLAB图像插值方法的比较

算机视觉任务中,经常要使用图像插值方法来改变图像的尺寸,如图像金字塔、图像超分辨的预处理等,可以说图像插值方法是计算机视觉任务的基本操作。本文对matlab里的图像插值方法进行分析比较。

首先简单介绍matlab的插值方法,然后对这些方法进行分析比较。matlab里使用插值方法改变图像尺寸的函数是imresize,imresize主要有三个参数,第一个是待处理图像,第二个是缩放尺寸,第三个是可选的插值方法METHOD,以下是matlab官方文档对imresize函数插值方法METHOD的说明:

METHOD can be a string naming a general interpolation method:
  
       'nearest'    - nearest-neighbor interpolation

      'bilinear'   - bilinear interpolation
 
      'bicubic'    - cubic interpolation; the default method

METHOD can also be a string naming an interpolation kernel:

      'box'        - interpolation with a box-shaped kernel

       'triangle'   - interpolation with a triangular kernel (equivalent to 'bilinear')

       'cubic'      - interpolation with a cubic kernel  (equivalent to 'bicubic')
  
       'lanczos2'   - interpolation with a Lanczos-2 kernel
  
       'lanczos3'   - interpolation with a Lanczos-3 kernel

详细见https://ww2.mathworks.cn/help/matlab/ref/imresize.html?s_tid=doc_ta#mw_3957e4e8-42f0-4156-82e2-822a8241b143 。本文主要比较nearest、bilinear、bicubic、lanczos2和lanczos3这几种插值方法。实验所使用的图像为Art:

Art 1390×1110

 原始图像尺寸为1390×1110,选用的缩放因子为3,使用PSNR与SSIM作为评价标准。本文内容主要分为以下几个部分:

  • 插值方法之间的相似度比较
  • 插值方法下采样上采样的比较——RGB三通道
  • 插值方法下采样上采样的比较——亮度通道y,由rgb2ycbcr转换

1、插值方法之间的相似度比较

对于原始尺寸1390×1110的Art图像,按照缩放因子3对原始图像进行下采样,得到低分辨率图像。使用不同的插值方法进行这一操作,比较低分辨率图像之间的相似程度,结果如下:

 nearestbilinearbicubiclanczos2lanczos3
nearest 35.115/0.96336.004/0.96935.973/0.96835.961/0.968
bilinear  45.604/0.99745.486/0.99741.652/0.992
bicubic   63.529/0.99948.558/0.998
lanczos2    48.763/0.998
lanczos3     

2、插值方法下采样上采样的比较——RGB三通道

对原始图像,按照缩放因子3对原始图像下采样再上采样,matlab读入彩色图像为RGB三通道图像,上采样下采样操作分别对每一个单通道进行。下表的结果是使用对应插值方法得到的结果原始图像(ground truth)的比较结果:

down|upnearestbilinearbicubiclanczos2lanczos3
nearest28.320/0.83430.331/0.88330.214/0.88230.207/0.88230.026/0.876
bilinear29.342/0.85230.382/0.87630.742/0.88530.749/0.88530.893/0.889
bicubic29.241/0.85130.996/0.89330.918/0.890 30.912/0.89030.667/0.883
lanczos229.238/0.85130.671/0.88330.915/0.89030.920/0.89030.998/0.893
lanczos329.089/0.84830.775/0.88630.939/0.89130.944/0.89130.968/0.

3、插值方法下采样上采样的比较——亮度通道y,由rgb2ycbcr转换

对原始图像,首先将读入的RGB彩色图像使用matlab的函数rgb2ycbcr转换到ycbcr三通道,然后再将y通道分离出来,仅对y通道做下采样再上采样。下表的结果是对y通道使用对应的插值方法得到的结果原始图像的y通道比较的结果:

down|upnearestbilinearbicubiclanczos2lanczos3
nearest28.320/0.83430.331/0.88330.214/0.88230.207/0.88230.026/0.876
bilinear29.342/0.85230.382/0.87630.742/0.88530.749/0.88530.893/0.889
bicubic29.241/0.85130.996/0.89330.918/0.890 30.912/0.89030.667/0.883
lanczos229.238/0.85130.671/0.88330.915/0.89030.920/0.89030.998/0.893
lanczos329.089/0.84830.775/0.88630.939/0.89130.944/0.89130.968/0.892

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值