向量的内积(点乘)与外积(叉乘)

本文详细探讨了向量的内积(点乘)与外积(叉乘),包括它们的几何意义、计算方法及应用。了解两者如何表征角度、投影和垂直关系,以及在实际问题中的运用技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

向量的内积(点乘)与外积(叉乘)

向量的内积=点乘
向量的外积=叉乘

向量的内积(点乘)

在这里插入图片描述
内积的几何意义:

  1. 用来表征或计算两个向量之间的夹角
  2. 在b向量在a向量方向上的投影。

向量的外积(叉乘)

两个向量的外积,又叫向量积、叉乘等。外积的运算结果是一个向量。并且两个向量的叉积与这两个向量组成的坐标平面垂直(右手定理)

在这里插入图片描述

叉乘的几何意义:
向量a和向量b的叉乘结果是一个向量,更为熟知的叫法是法向量,该向量垂直于a和b向量构成的平面。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值