采用了递归的思想来解决问题。
先序遍历的第一个结点为该二叉树的根节点。
找到中序遍历中该根节点所在位置,则根节点左侧为该二叉树的左子树的中序遍历(右侧为二叉树的右子树的中序遍历),我们同时也得到了左子树的结点个数。
那么先序遍历去掉第一个结点,数出左子树结点个数个结点,便得到该二叉树左子树的先序遍历(剩下的为二叉树的右子树的先序遍历)。
程序的实现过程中,在Node中定义了一个建立二叉树的方法,三个参数分别为先序遍历字符串,中序遍历字符串,字符串长度。
过程是,创建当前节点p,赋值为先序遍历字符串首字符,判断左非空建立左子树,判断右非空建立右子树,返回该结点。
而后在BinaryTree中对root调用该方法,三个参数相同,返回给root。
#include<iostream>
#include<string>
using std::cout;
using std::endl;
using std::string;
class Node {
public:
int data;
Node *lchild, *rchild;
Node(int _data) {
data = _data;
lchild = NULL;
rchild = NULL;
}
~Node() {
if (lchild != NULL) {
delete lchild;
}
if (rchild != NULL) {
delete rchild;
}
}
void postorder() {
if (lchild != NULL) {
lchild->postorder();
}
if (rchild != NULL) {
rchild->postorder();
}
cout << data << " ";
}
// 请在下面实现建立二叉树的方法 build
Node* build(const string &pre_str, const string &in_str, int len) {
Node *p = new Node(pre_str[0] - '0');
int pos = in_str.find(pre_str[0]);
if (pos > 0) {
p -> lchild = build(pre_str.substr(1, pos), in_str.substr(0, pos), pos);
}
if (len - pos - 1 > 0) {
p -> rchild = build(pre_str.substr(pos + 1), in_str.substr(pos + 1), len - pos - 1);
}
return p;
}
};
class BinaryTree {
private:
Node *root;
public:
BinaryTree() {
root = NULL;
}
~BinaryTree() {
delete root;
}
// 请在下面实现构造函数
BinaryTree(const string &pre_str, const string &in_str, int len) {
root = root -> build(pre_str, in_str, len);
}
void postorder() {
root->postorder();
}
};
int main() {
string pre_str = "136945827";
string in_str = "963548127";
BinaryTree binarytree(pre_str, in_str, in_str.length());
binarytree.postorder();
cout << endl;
return 0;
}