二叉树:已知先序和中序求后序

采用了递归的思想来解决问题。

先序遍历的第一个结点为该二叉树的根节点。

找到中序遍历中该根节点所在位置,则根节点左侧为该二叉树的左子树的中序遍历(右侧为二叉树的右子树的中序遍历),我们同时也得到了左子树的结点个数。

那么先序遍历去掉第一个结点,数出左子树结点个数个结点,便得到该二叉树左子树的先序遍历(剩下的为二叉树的右子树的先序遍历)。


程序的实现过程中,在Node中定义了一个建立二叉树的方法,三个参数分别为先序遍历字符串,中序遍历字符串,字符串长度。

过程是,创建当前节点p,赋值为先序遍历字符串首字符,判断左非空建立左子树,判断右非空建立右子树,返回该结点。

而后在BinaryTree中对root调用该方法,三个参数相同,返回给root。


#include<iostream>
#include<string>
using std::cout;
using std::endl;
using std::string;
class Node {
public:
    int data;
    Node *lchild, *rchild;
    Node(int _data) {
        data = _data;
        lchild = NULL;
        rchild = NULL;
    }
    ~Node() {
        if (lchild != NULL) {
            delete lchild;
        }
        if (rchild != NULL) {
            delete rchild;
        }
    }
    void postorder() {
        if (lchild != NULL) {
            lchild->postorder();
        }
        if (rchild != NULL) {
            rchild->postorder();
        }
        cout << data << " ";
    }
    // 请在下面实现建立二叉树的方法 build
    Node* build(const string &pre_str, const string &in_str, int len) {
        Node *p = new Node(pre_str[0] - '0');
        int pos = in_str.find(pre_str[0]);
        if (pos > 0) {
            p -> lchild = build(pre_str.substr(1, pos), in_str.substr(0, pos), pos);
        }
        if (len - pos - 1 > 0) {
            p -> rchild = build(pre_str.substr(pos + 1), in_str.substr(pos + 1), len - pos - 1);
        }
        return p;
    }
};
class BinaryTree {
private:
    Node *root;
public:
    BinaryTree() {
        root = NULL;
    }
    ~BinaryTree() {
        delete root;
    }
    // 请在下面实现构造函数
    BinaryTree(const string &pre_str, const string &in_str, int len) {
        root = root -> build(pre_str, in_str, len);
    }
    void postorder() {
        root->postorder();
    }
};
int main() {
    string pre_str = "136945827";
    string in_str = "963548127";
    BinaryTree binarytree(pre_str, in_str, in_str.length());
    binarytree.postorder();
    cout << endl;
    return 0;
}
已知一棵二叉树的前遍历(Preorder)遍历(Inorder),可以推断出它的后序遍历(Postorder)。这是因为前、中后序遍历分别对应了“根-左-右”、“左-根-右”“左-右-根”的顺。 下面是一个简单的算法来实现这个转换: 1. **前遍历**给出的是根节点 -> 左子树 -> 右子树的顺。 2. **中遍历**给出的是左子树 -> 根节点 -> 右子树的顺。 3. 后序遍历需要将这两个信息组合起来找到根节点的位置。 首,我们需要从前遍历中找到根节点。这在前遍历中是最出现的元素,因为它代表开始。一旦找到根,我们可以在中遍历中确定左右子树的位置,因为左子树的节点会出现在根之前,而右子树的节点会出现在根之后。 以下是一个伪代码实现: ```c void getPostorder(int* preorder, int* inorder, int start, int end) { if (start > end) return; // 在中遍历中找根节点的位置 int rootIndex = -1; for (int i = start; i <= end; ++i) { if (inorder[i] == preorder[start]) { rootIndex = i; break; } } // 后续处理 int leftEnd = rootIndex - 1; // 在中中根左边的部分结束位置 int rightStart = rootIndex + 1; // 在中中根右边的部分开始位置 // 递归处理左子树右子树 getPostorder(preorder, inorder, start, leftEnd); getPostorder(preorder, inorder, rightStart, end); // 将根节点添加到结果后 printf("%d ", preorder[start]); } // 调用函数并传入数据 int preorder[] = {1, 2, 4, 5, 3}; int inorder[] = {4, 2, 5, 1, 3}; int n = sizeof(preorder)/sizeof(preorder[0]); getPostorder(preorder, inorder, 0, n-1); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值