操千曲而晓声,观千剑而后识器 ---- 《文心雕龙》
力扣的周赛自闭了,好久没写了,丢掉的改捡了。
题目传送
Problem1 最小绝对差
- 难度:Easy
题目
给你个整数数组 arr,其中每个元素都 不相同。
请你找到所有具有最小绝对差的元素对,并且按升序的顺序返回。
思路
- 遍历,边找边push,只需一遍
貌似代码写复杂了
题解
#include<bits/stdc++.h>
using namespace std;
/*
LeetCode WeeklyContest-155
*/
vector<vector<int> > minimumAbsDifference(vector<int>& arr) {
sort(arr.begin(),arr.end());
int n=arr.size();
vector<vector<int> > result;
int min = arr[1]-arr[0];
vector<int> tmp;
for(int i=0;i<n-1;i++){
if(arr[i+1]-arr[i] < min){
min = arr[i+1]-arr[i];
result.clear();
tmp.push_back(arr[i]);
tmp.push_back(arr[i+1]);
result.push_back(tmp);
tmp.clear();
}
else if(arr[i+1]-arr[i] == min){
tmp.push_back(arr[i]);
tmp.push_back(arr[i+1]);
result.push_back(tmp);
tmp.clear();
}
else ;
}
return result;
}
// 测试下
int main()
{
vector<int> v;
v.push_back(-20);
v.push_back(11);
v.push_back(26);
v.push_back(27);
v.push_back(40);
vector<vector<int> > result = minimumAbsDifference(v);
vector<vector<int> >::iterator rIt;
vector<int>::iterator it;
for(rIt = result.begin();rIt!=result.end();rIt++){
for(it = (*rIt).begin();it!=(*rIt).end();it++){
cout << *it << " ";
}
cout << endl;
}
return 0;
}
Problem 2 丑数 III
题目
请你帮忙设计一个程序,用来找出第 n 个丑数。
丑数是可以被 a 或 b 或 c 整除的 正整数。
1 <= n, a, b, c <= 10^9
1 <= a * b * c <= 10^18
本题结果在 [1, 2 * 10^9] 的范围内
- 难度:Medium
思路
- 无脑暴力 1 到 min ( n ∗ a , n ∗ b , n ∗ c ) 1到\min(n*a,n*b,n*c) 1到min(n∗a,n∗b,n∗c) 超时。
- 无脑开个数组,把 i ∗ a 、 i ∗ b 、 i ∗ c i*a、i*b、i*c i∗a、i∗b、i∗c 其中 i = 1... n i=1...n i=1...n,然后写个sort(),直接取第n个数,内存爆掉。
以上都是不可取的
计算1~m之间有多少丑数,设为cnt,然后从n开始折半查找,判断cnt与n的关系,最后直接定位到第n个丑数。
另外,如何判断1~m之间有多少丑数?公式如下:
c
n
t
=
m
/
a
+
m
/
b
+
m
/
c
−
m
/
l
c
m
(
a
,
b
)
−
m
/
l
c
m
(
b
,
c
)
−
m
/
l
c
m
(
a
,
c
)
+
m
/
l
c
m
(
l
c
m
(
a
,
b
)
,
c
)
cnt = m/a + m/b + m/c - m/lcm(a,b)- m/lcm(b,c) - m/lcm(a,c) + m/lcm(lcm(a,b),c)
cnt=m/a+m/b+m/c−m/lcm(a,b)−m/lcm(b,c)−m/lcm(a,c)+m/lcm(lcm(a,b),c)
其中
l
c
m
(
a
,
b
)
lcm(a,b)
lcm(a,b)是a、b的最小公倍数。
题解
/*
LeetCode WeeklyContest-155
*/
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
// 避免超范围 ,不妨都写成ll
ll gcd(int x, int y){
if(x>y) swap(x,y);
int r = y%x;
if(r==1) return 1;
while(r){
y = x;
x = r;
r = y%x;
}
return x;
}
ll lcm(int x, int y){
return x/gcd(x,y)*y;
}
bool countLessN(ll m,int a,int b,int c,int n){
int cnt = m/a + m/b + m/c
- m/lcm(a,b) - m/lcm(b,c) - m/lcm(a,c)
+ m/lcm(lcm(a,b),c);
return cnt >= n;
}
int nthUglyNumber(int n, int a, int b, int c) {
ll begin =1,end=2e10+5;
while(begin+1<end){ // 注意是begin+1<end
int mid = (begin+end)/2;
if(countLessN(mid,a,b,c,n))
end = mid;
else begin=mid;
}
return end;
}
// 测试下
int main()
{
int n,a,b,c;
n = 1000000000, a = 2, b = 217983653, c = 336916467;
cout << nthUglyNumber(n,a,b,c);
return 0;
}
Problem3
题目
给你一个字符串 s,以及该字符串中的一些「索引对」数组 pairs,其中 pairs[i] = [a, b] 表示字符串中的两个索引(编号从 0 开始)。
你可以 任意多次交换 在 pairs 中任意一对索引处的字符。
返回在经过若干次交换后,s 可以变成的按字典序最小的字符串。
- 难度:Medium
思路
先根据索引对建立并查集,构成若干个连通分量,每个连通分量内部排序,使其排成最小字典序,然后再将排完序的连通分量复原,就可以得到最小字典序的字符串了。
题解
#include<bits/stdc++.h>
using namespace std;
vector<int> father,sz;
int find(int x){ // 并查集 查
return father[x]==x?x:father[x] = find(father[x]);
}
string smallestStringWithSwaps(string s,vector<vector<int> > pairs){
int n=s.size();
father.resize(n);
sz.resize(n);
for(int i=0;i<n;i++){ // 初始化
father[i] = i;
sz[i] = 1;
}
int n1 = pairs.size();
for(int i=0;i<n1;i++){
vector<int> tmp = pairs[i];
int f1 = find(tmp[0]),f2=find(tmp[1]);
if(f1!=f2){
if(sz[f1]<sz[f2]){
father[f1] = f2;
sz[f2] += sz[f1];
}
else{
father[f2] = f1;
sz[f1] += sz[f2];
}
}
}
vector<vector<char> > charArr(n);
vector<vector<int> > posArr(n);
// 并查集发挥作用
for(int i=0;i<n;i++){
charArr[find(i)].push_back(s[i]);
posArr[find(i)].push_back(i);
}
// char数组排序
for(int i=0;i<charArr.size();i++){
sort(charArr[i].begin(),charArr[i].end());
}
// 把排完序的联通块,合到一起
string s1(n,'\0');
for(int i=0;i<n;i++){
for(int j=0;j<charArr[i].size();j++){
s1[posArr[i][j]] = charArr[i][j];
}
}
return s1;
}
// 测试下
int main()
{
string s="cba";
vector<vector<int> > v;
vector<int> s1,s2;
s1.push_back(0);
s1.push_back(1);
s2.push_back(1);
s2.push_back(2);
v.push_back(s1),v.push_back(s2);
cout << smallestStringWithSwaps(s,v) << endl;
return 0;
}
Problem4 项目管理
略