畅通工程
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 54002 Accepted Submission(s): 28843
Problem Description
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。
Sample Input
4 2 1 3 4 3 3 3 1 2 1 3 2 3 5 2 1 2 3 5 999 0 0
Sample Output
1 0 2 998
分析:作为并查集起手的题目,我在看题解之前并不知道这叫并查集,方法上实现的也不好,一直WA,最后看了一下并查集的讲解,才恍然大悟。
推荐一个博客:点击打开链接
详见汉释,代码如下:
#include<stdio.h>
#include<string.h>
int ans[1005];
int pre[1005];
int find(int a)
{
int x=a;
while(pre[x]!=x)
x=pre[x];
//最终x为a的总舵主
int i=a,tem;
while(pre[i]!=x)//将沿途的各个堂主老大,归于总舵主门下,以便于最后统计一共几个门派,也就是几个没有交集的城镇集合。
{
tem=pre[i];
pre[i]=x;
i=tem;
}
return x;
}
int mix(int p,int v)
{
int x=find(p); int y=find(v);
if(x!=y)
pre[x]=y;
}
int main()
{
int n,m;
int p,v;
int sum;
while(scanf("%d%d",&n,&m),n)
{
sum=0;
memset(ans,0,sizeof(ans));
for(int i=1;i<=n;i++)
pre[i]=i;
for(int i=0;i<m;i++)
{
scanf("%d%d",&p,&v);
mix(p,v);
}
for(int i=1;i<=n;i++)
ans[find(i)]=1;
for(int i=1;i<=n;i++)
if(ans[i])
sum++;
printf("%d\n",sum-1);//只需要sum-1条边就能使其全部联通
}
return 0;
}