线性回归(完整归纳,复习,面试)

1.什么是线性回归

  • 线性:两个变量之间的关系是一次函数关系的——图象是直线,叫做线性。
  • 非线性:两个变量之间的关系不是一次函数关系的——图象不是直线,叫做非线性。
  • 回归:人们在测量事物的时候因为客观条件所限,求得的都是测量值,而不是事物真实的值,为了能够得到真实值,无限次的进行测量,最后通过这些测量数据计算回归到真实值,这就是回归的由来。

2. 线性回归能够解决什么样的问题

对大量的观测数据进行处理,从而得到比较符合事物内部规律的数学表达式。也就是说寻找到数据与数据之间的规律所在,从而就可以模拟出结果,也就是对结果进行预测。解决的就是通过已知的数据得到未知的结果。例如:对房价的预测、判断信用评价、电影票房预估等。

3. 一般表达式是什么

Y = w x + b Y = wx + b Y=wx+b
w叫做x的系数,b叫做偏置项。

4. 如何计算

4.1 Loss Function–MSE
在这里插入图片描述
利用梯度下降法找到最小值点,也就是最小误差,最后把 w 和 b 给求出来。

5. 过拟合、欠拟合如何解决

使用正则化项,也就是给loss function加上一个参数项,正则化项有L1正则化、L2正则化、ElasticNet。加入这个正则化项好处:

  • 控制参数幅度,不让模型“无法无天”。
  • 限制参数搜索空间
  • 解决欠拟合与过拟合的问题。

5.1 什么是L2正则化(岭回归)
方程:
在这里插入图片描述
J0表示上面的 loss function ,在loss function的基础上加入w参数的平方和乘以lambda,假设:
在这里插入图片描述
回忆以前学过的单位元的方程:
在这里插入图片描述
正和L2正则化项一样,此时我们的任务变成在L约束下求出J取最小值的解。求解J0的过程可以画出等值线。同时L2正则化的函数L也可以在w1w2的二维平面上画出来。如下图:
在这里插入图片描述
L表示为图中的黑色圆形,随着梯度下降法的不断逼近,与圆第一次产生交点,而这个交点很难出现在坐标轴上。这就说明了L2正则化不容易得到稀疏矩阵,同时为了求出损失函数的最小值,使得w1和w2无限接近于0,达到防止过拟合的问题。

5.2 什么场景下用L2正则化
只要数据线性相关,用LinearRegression拟合的不是很好,需要正则化,可以考虑使用岭回归(L2), 如果输入特征的维度很高,而且是稀疏线性关系的话, 岭回归就不太合适,考虑使用Lasso回归。

5.3 什么是L1正则化(Lasso回归)
L1正则化与L2正则化的区别在于惩罚项的不同:
在这里插入图片描述
求解J0的过程可以画出等值线。同时L1正则化的函数也可以在w1w2的二维平面上画出来。如下图:
在这里插入图片描述
惩罚项表示为图中的黑色棱形,随着梯度下降法的不断逼近,与棱形第一次产生交点,而这个交点很容易出现在坐标轴上。这就说明了L1正则化容易得到稀疏矩阵。

5.4 什么场景下使用L1正则化
L1正则化(Lasso回归)可以使得一些特征的系数变小,甚至还使一些绝对值较小的系数直接变为0,从而增强模型的泛化能力 。对于高的特征数据,尤其是线性关系是稀疏的,就采用L1正则化(Lasso回归),或者是要在一堆特征里面找出主要的特征,那么L1正则化(Lasso回归)更是首选了。

5.5 什么是ElasticNet回归
ElasticNet综合了L1正则化项和L2正则化项,以下是它的公式:
在这里插入图片描述
5.6 ElasticNet回归的使用场景
ElasticNet在我们发现用Lasso回归太过(太多特征被稀疏为0),而岭回归也正则化的不够(回归系数衰减太慢)的时候,可以考虑使用ElasticNet回归来综合,得到比较好的结果。

6. 线性回归要求因变量服从正态分布?

我们假设线性回归的噪声服从均值为0的正态分布。 当噪声符合正态分布N(0,delta2)时,因变量则符合正态分布N(ax(i)+b,delta2),其中预测函数y=ax(i)+b。这个结论可以由正态分布的概率密度函数得到。也就是说当噪声符合正态分布时,其因变量必然也符合正态分布。
在用线性回归模型拟合数据之前,首先要求数据应符合或近似符合正态分布,否则得到的拟合函数不正确。

7.代码实现

(暂时略,打算写好几个例子对比。这几天补充。用python 手动实现理解原理,然后用类封装(差不多4个例子)。用scikitlearn调用,掉包形式简单,看看源码。最后其实考虑到效率用矩阵来计算。)

第一部分代码:python手动实现主要理解原理,数据集是一维的,没有封装。建议好好看下,对原理理解很有帮助。
代码:https://github.com/Sirow/Linear_Regression
说明:
总共用了4个示例

  • model1 最简单的一次方程,主要理解求解参数时候的代码,就是梯度下降,
    先指导损失函数,然后把求梯度的数学公式写出来,根据公式写代码。
  • model2 是二次的,改进注释里有,给每个参数设置对应的lr(超参数),而不是给个lr值。
  • model3 是5次的了,同理,但是效果不好,因为训练集的损失函数值和测试集的损失函数值相差太大,要引入正则项。
  • model4 比较完整, 引入了正则项。
    注意:在写代码时候,一定要会求梯度。这里把求梯度公式和包含正则项时候求梯度公式给大家,就是求导。
    在这里插入图片描述
    在这里插入图片描述
  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值