线性回归(归纳)

线性回归介绍

1.简单介绍线性回归

线性回归就是利用的样本 D = ( X i , Y j ) , i = 1 , 2 , 3... N , X i D=(X_i,Y_j),i =1,2,3...N,X_i D=(Xi,Yj),i=1,2,3...N,Xi是特征数据,可能是一个,也可能是多个,通过有监督的学习,学习到由 x x x y y y的映射 h h h,利用该映射关系对未知的数据进行预估,因为 y y y为连续值,所以是回归问题。

2. 线性回归的假设函数是什么形式?

线性回归的假设函数( θ 0 θ_0 θ0表示截距项, x 0 = 1 x_0=1 x0=1,方便矩阵表达):
在这里插入图片描述
其中 θ , x θ,x θ,x都是列向量

3. 线性回归的代价(损失)函数是什么形式?

在这里插入图片描述

4. 简述岭回归与Lasso回归以及使用场景。
  • 目的:

    • 解决线性回归出现的过拟合的请况。
    • 解决在通过正规方程方法求解 θ θ θ的过程中出现的 X T X X^TX XTX不可逆的请况。
  • 本质:

    • 约束(限制)要优化的参数

这两种回归均通过在损失函数中引入正则化项来达到目的:

线性回归的损失函数:

在这里插入图片描述

  • 岭回归

    • 损失函数:
      在这里插入图片描述
  • Lasso回归

    • 损失函数:
      在这里插入图片描述

本来Lasso回归与岭回归的解空间是全部区域,但通过正则化添加了一些约束,使得解空间变小了,甚至在个别正则化方式下,解变得稀疏了。
在这里插入图片描述
如图所示,这里的 w 1 , w 2 w_1,w_2 w1,w2都是模型的参数,要优化的目标参数,那个红色边框包含的区域,其实就是解空间,正如上面所说,这个时候,解空间“缩小了”,你只能在这个缩小了的空间中,寻找使得目标函数最小的 w 1 , w 2 w_1,w_2 w1,w2左边图的解空间是圆的,是由于采用了 L 2 L2 L2范数正则化项的缘故,右边的是个四边形,是由于采用了 L 1 L1 L1范数作为正则化项的缘故,大家可以在纸上画画, L 2 L2 L2构成的区域一定是个圆, L 1 L1 L1构成的区域一定是个四边形。

再看看那蓝色的圆圈,再次提醒大家,这个坐标轴和特征(数据)没关系,它完全是参数的坐标系,每一个圆圈上,可以取无数个 w 1 , w 2 w_1,w_2 w1,w2 ,这些 w 1 , w 2 w_1,w_2 w1,w2 有个共同的特点,用它们计算的目标函数值是相等的!那个蓝色的圆心,就是实际最优参数,但是由于我们对解空间做了限制,所以最优解只能在“缩小的”解空间中产生。

蓝色的圈圈一圈又一圈,代表着参数 w 1 , w 2 w_1,w_2 w1,w2在不停的变化,并且是在解空间中进行变化(这点注意,图上面没有画出来,估计画出来就不好看了),直到脱离了解空间,也就得到了图上面的那个 w ∗ w^* w这便是目标函数的最优参数。

对比一下左右两幅图的 w ∗ w^* w,我们明显可以发现,右图的 w ∗ w^* w
w 1 w_1 w1分量是0,有没有感受到一丝丝凉意?稀疏解诞生了!是的,这就是我们想要的稀疏解,我们想要的简单模型。 L 1 L1 L1 L 2 L2 L2正则化更容易产生稀疏矩阵。

5. 线性回归要求因变量服从正态分布吗?

线性回归的假设前提是噪声服从正态分布,即因变量服从正态分布。但实际上难以达到,因变量服从正态分布时模型拟合效果更好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值