yiruzhao
码龄5年
关注
提问 私信
  • 博客:43,518
    43,518
    总访问量
  • 45
    原创
  • 54,145
    排名
  • 455
    粉丝
  • 0
    铁粉
  • 学习成就
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2019-09-04
博客简介:

SisterRu的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    3
    当前总分
    333
    当月
    15
个人成就
  • 获得576次点赞
  • 内容获得3次评论
  • 获得565次收藏
  • 代码片获得968次分享
创作历程
  • 45篇
    2024年
成就勋章
TA的专栏
  • CLIP-ReID代码解读
    10篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

179人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

SotMax函数的对数版本Log-SoftMax

Log-Softmax在处理大规模多类分类问题时非常有用,尤其是在模型需要处理大量输出类别时。它使得从logits到损失计算的过程更直接、更高效,并且通过避免直接的概率计算,降低了因数值问题导致的误差。
原创
发布博客 2024.07.31 ·
660 阅读 ·
27 点赞 ·
0 评论 ·
24 收藏

交叉熵损失

交叉熵是一种常用于的方法,特别是在分类任务中用于评估模型的输出与真实标签之间的匹配程度。在机器学习中,特别是在使用神经网络进行多类分类时,交叉熵损失函数被广泛使用。
原创
发布博客 2024.07.31 ·
424 阅读 ·
5 点赞 ·
0 评论 ·
12 收藏

SoftMax函数

Softmax函数是一种常用于多类分类任务的激活函数,其主要作用是将一个实数向量转换成一个概率分布。每个元素的值在(0)到(1)之间,并且所有元素的和为(1)。
原创
发布博客 2024.07.31 ·
770 阅读 ·
4 点赞 ·
0 评论 ·
8 收藏

ClipReID的监督对比损失SupConLoss

SupConLoss继承自nn.Module,这是 PyTorch 中所有神经网络模块的基类。在初始化方法__init__中,它接受一个device参数,用来指定运算应该在哪个设备上进行(如CPU或GPU)。是一个标量,用于控制损失计算中的温度参数,影响特征向量之间相似度的缩放。
原创
发布博客 2024.07.31 ·
411 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

torch.cuda.amp的功能

在PyTorch中,模块提供了自动混合精度(Automatic Mixed Precision, AMP)的工具,这是一种用于加速深度学习模型训练的技术,同时还可以减少模型训练过程中所需的内存。使用这个模块,可以在不牺牲模型精度的情况下提高训练速度和效率。
原创
发布博客 2024.07.31 ·
328 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

深度学习训练过程中,每个batch需要保存记录的关键数据

在深度学习训练过程中,为了监控模型的训练效果和调整训练策略,需要针对每个batch记录一些关键数据。这些数据不仅帮助我们理解模型在训练集上的表现,还有助于早期发现过拟合、欠拟合或其他潜在问题。
原创
发布博客 2024.07.31 ·
1004 阅读 ·
28 点赞 ·
0 评论 ·
18 收藏

深度学习中的batch, iteration, epoch之间的关系

假设有一个包含60000个样本的训练集,如果设置batch size为1000,则每个epoch包含60次迭代。在整个训练过程中,你会设置一个epoch数,表示你希望整个数据集通过模型训练多少次。每个epoch包含多次迭代,每次迭代处理一个batch的数据。因此,迭代次数是根据给定的batch size和数据集大小计算得出的。这种训练方式有助于优化内存使用,同时可以通过随机梯度下降(SGD)或其变体来有效更新网络权重,这通常比使用整个数据集计算精确梯度更高效、更快速。这也有助于模型泛化,避免过拟合。
原创
发布博客 2024.07.31 ·
563 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

怎样使用Google Colab

Google Colab是一个非常方便的在线工具,允许你在浏览器中运行Python代码并使用Jupyter笔记本。
原创
发布博客 2024.07.29 ·
890 阅读 ·
4 点赞 ·
0 评论 ·
5 收藏

Numpy库的功能介绍

NumPy 是 Python 中用于科学计算的基础库之一。它提供了支持高效操作大型多维数组和矩阵的功能,并且包含了大量的数学函数库。以下是对 NumPy 的详细介绍,包括常用功能和示例代码。
原创
发布博客 2024.07.25 ·
279 阅读 ·
8 点赞 ·
0 评论 ·
1 收藏

PyTorch 的各个核心模块和它们的功能

通过这些模块,PyTorch 提供了构建、训练、优化和部署深度学习模型所需的全面支持。
原创
发布博客 2024.07.25 ·
855 阅读 ·
22 点赞 ·
0 评论 ·
18 收藏

排列和组合

排列公式 ( P(n, k) )从 ( n ) 个元素中选取 ( k ) 个元素,并考虑顺序。公式为:[ P(n, k) = \frac{n!}{(n-k)!} ]组合公式 ( C(n, k) )从 ( n ) 个元素中选取 ( k ) 个元素,不考虑顺序。公式为:[ C(n, k) = \frac{n!}{k!(n-k)!} ]这两个公式基于排列组合的基本原理,通过选择和排列元素的步骤推导而来。
原创
发布博客 2024.07.24 ·
1313 阅读 ·
20 点赞 ·
0 评论 ·
17 收藏

Transformer中的自注意力是怎么实现的?

在Transformer模型中,自注意力(Self-Attention)是核心组件,用于捕捉输入序列中不同位置之间的关系。自注意力机制通过计算每个标记与其他所有标记之间的注意力权重,然后根据这些权重对输入序列进行加权求和,从而生成新的表示。下面是实现自注意力机制的代码及其详细说明。
原创
发布博客 2024.07.18 ·
1343 阅读 ·
32 点赞 ·
0 评论 ·
22 收藏

Transformer是怎样处理序列数据的?

Transformer模型最初是一种广泛应用于自然语言处理(NLP)和其他序列建模任务的架构。它由编码器(encoder)和解码器(decoder)组成。
原创
发布博客 2024.07.18 ·
1195 阅读 ·
29 点赞 ·
0 评论 ·
12 收藏

CLIP及其对齐的概念、思想、实现

在测试时,CLIP可以直接实现zero-shot的图像分类,即**不需要任何训练数据,就能在某个具体下游任务上实现分类。对于一个包含N个文本-图像对的训练Batch,计算文本特征和图像特征的余弦相似度。CLIP的全称是,Contrastive Language-Image Pre-training。在训练时,训练目标是最大化N个正样本的相似度,同时最小化负样本的相似度。构建了一个包含4亿对(图像、文本)的新数据集WebImageText。,即真正属于一对的文本和图像(矩阵中的对角线元素),而剩余的。
原创
发布博客 2024.07.15 ·
1434 阅读 ·
8 点赞 ·
0 评论 ·
14 收藏

怎样查看服务器的ubuntu系统版本和显卡型号

要查看服务器的Ubuntu系统版本和显卡版本,可以使用以下命令。
原创
发布博客 2024.07.02 ·
446 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

CLIP-ReID代码解读八——loss文件夹(triplet_loss.py)

"""归一化到单位长度,沿指定维度进行。Args:x: PyTorch 变量Returns:x: PyTorch 变量,形状与输入相同"""return x"""计算两个张量之间的欧氏距离。Args:x: PyTorch 变量,形状 [m, d]y: PyTorch 变量,形状 [n, d]Returns:dist: PyTorch 变量,形状 [m, n]"""
原创
发布博客 2024.06.24 ·
681 阅读 ·
12 点赞 ·
0 评论 ·
26 收藏

CLIP-ReID代码解读八——loss文件夹(make_loss.py)

创建一个损失函数和中心损失(CenterLoss)准则。这段代码定义了一个函数。
原创
发布博客 2024.06.24 ·
925 阅读 ·
30 点赞 ·
0 评论 ·
20 收藏

CLIP-ReID代码解读七——model.py下

CLIP类实现了一个多模态模型,可以同时处理图像和文本,生成它们的嵌入表示,并计算它们之间的相似度。模型使用视觉编码器(或)和文本编码器(Transformer)来处理输入,并计算图像和文本之间的相似度。这种设计使得模型可以在图像-文本匹配和检索任务中表现出色。
原创
发布博客 2024.06.24 ·
664 阅读 ·
7 点赞 ·
0 评论 ·
14 收藏

深度学习中常用的权重初始化方法以及Pytorch实现

在深度学习中,常见的权重初始化方法包括零初始化、随机初始化、Xavier(Glorot)初始化、He初始化、正交初始化、Lecun初始化等。这些方法在不同的场景和网络结构下有不同的效果。
原创
发布博客 2024.06.24 ·
553 阅读 ·
10 点赞 ·
0 评论 ·
9 收藏

CLIP中的logit_scale参数

这行代码定义并初始化了一个可训练的参数,用于在计算图像和文本特征的相似度时进行缩放。通过这种方式,模型可以在训练过程中调整相似度的动态范围,以便更好地学习图像和文本特征之间的匹配关系。
原创
发布博客 2024.06.24 ·
1163 阅读 ·
8 点赞 ·
0 评论 ·
7 收藏
加载更多