我是怎么完成论文降重和aigc降重的?查重降重干货分享!

希望我本篇分享的论文查重降重以及aigc降低的经历,可以鼓励和帮助正在因为论文查重降重而苦恼的同学。

早日降重成功,顺利通过查重!

前言

我的论文查重率:7.1%,知网aigc检测9%,(学校要求的是知网查重率15%以下达标),经历了一个多月的修改,总算降重成功。

查重

从3月初初稿出来后我同样经过了多次查重,面对各式各样的查重网站,我使用了万方、checkbug、蝌蚪论文,而这三个网站中checkbug和蝌蚪论文每天都可以免费查重一篇!

checkbug查重

蝌蚪论文查重

我的查重经历概述:

  1. 初稿查重:checkbug和蝌蚪论文都用的免费版查的,还有万方查重,检测结果分别是checkbug为51%,蝌蚪论文49%,最低的是万方为32%(学信网万方可以免费查一次)。修改吧......。
  2. 二稿查重:合买的知网VIP查重,由于是合买的所以查重率没有参考价值,主要参考检测报告标红修改......可是改了几个通宵,在知网个人版一查,查重率降了5%下去,难搞!(所以建议大家要用知网的话就直接提交个人版即可!)
  3. 继续降重查重:checkbug机器降重和至尊版查重!
  4. .......
  5. 定稿查重:checkbug至尊版5.7%、知网校审7.1%
  6. Aigc检测:蝌蚪论文降低aigc后知网检测9%

结论:除了知网,其他查重系统均可以领取免费查重,初稿检测是没有问题的,修改降重后从二稿查重开始就使用收费版吧,不过这类查重系统的收费都不高,1元/千字对于学生来说基本都可以接受;从查重率来看,没有哪个系统会真正和知网一样的,如果学校要求知网查重,那么除了知网,其他的都不准确;但是checkbug和蝌蚪论文的查重报告是很有参考价值,标注和知网最为接近。

降重

看到网上很多说删除法降重的,于是删掉了一些标红内容,结果查重率并没有降多少,再删篇幅就不够了!

完了,我压根就不知道怎么搞定这一大片的红,实在不会了!

老师救我

万般无奈之下,请教老师,佛系的老师就叫我根据查重报告来修改,注意格式和正确引用,可查重率依然居高不下。

学长经验

在躺平的几天里和很多同学一样刷着各种降重的方法,几位学长的关于论文查重的分享让我备受启发,知己知彼百战不殆啊。道理很简单,但过程是曲折的,一遍遍的试错,一个个方法的总结,一段段的修改,然后然后就有了文章开头的成功!

分享

后来,想想几次论文写作和查重降重的经历,是不是应该给一个完整的总结,但是面对这躁动的世界,一直没有静下心来。这几天有学弟问我关于论文降重的一些问题,又点燃了我分享的念头,于是学着之前看到的几位学长的样子把总结的一些论文降重的技巧分享出来,帮助更多同学完成与毕业论文降重的较量。

论文降重技巧

技巧机器降重工具

种降重模式:1.智能降重;2.强力降重;3.AI知网降重4.降低aigc

如果因为时间紧,实在降不下去,我直接使用checkbug降重软件全文修改,然后在结合其他方法调整自改。

  1. 智能降重

针对本系统定稿检测降重超有效!提交查重时选择“智能降重”或者直接上传“智能降重”都可以!然后点击提交!

提交后在智能降重结果页面查看进度,降重完成后点击下载文档。

使用过后发现还可以帮我扩展思路!例如:部分内容智能降重后机器用了拆分和替换法修改,启发我在另外一个部位自己用该方法修改延展。

2.强力降重(保留格式)

关键的关键!蝌蚪论文和checkbug他们的强力降重还可以保留原格式,所以我使用了两次智能降重(查降查)后,又使用了一次强力降重!买了个3次的降重套餐正好!

降重前后对比:

第三次全文降重后checkbug查重率为9.88%,然后对照查重报告把标红的段落使用“知网降重”逐一改写。

3、知网降重(段落改写续写)

知网降重功能是专门针对局部段落进行AI改写的,只需要复制重复内容粘贴到文本框中 选择改写或续写!

进一步修改最后一次checkbug论文查重5.72%,然后才提交校审的,知网7.1%。

画个重点:修改时尽量不要改动文章结构,特别是没有标红的地方连标点都不要变,变动结构后很容易出现新的重复段落。怎么改的呢?我的方法是对于重复的小句子直接不改动,先搞大面积的重复内容,可以避免新的重复也可能下次查重的时候反而不重复了。

4、降低aigc

最新的aigc检测真是搞不懂为什么自己写的内容也会被标疑似。至于修改方法,大家注意把文中类似首先,其次,再次这样的ai模型语言改换成1,2,3以外,其他方法真不知道如何下手,如果aigc检测率不是很高,大家可以注意检查下。如果降低不下去就用工具吧!

我用的是蝌蚪论文的降低aigc功能!

登录蝌蚪论文系统,选择降低aigc按钮,上传文章提交;

在aigc降低结果页面看改写进度,等几分钟刷新页面,改完后点击现在改写后文档;

下载完后一定要检查全文,确定没有逻辑表述、格式等错误后提交知网aigc检测9%!

至此,论文降重和aigc降低全部完成了!下面分享些自己调整论文降重的技巧!

技巧:变换语法句式

变换语法句式的核心是:几乎所有的论文查重软件都会通过对一个句子主谓宾定状补等语法结构进行对比,如果出现一个句子中,主语、谓语、宾语关键词和排列的顺序相同,就会判定为抄袭!

注意是排列的顺序相同就会被判定为抄袭,因此,在改重时,可以将句式语法打乱。如将陈述句改成疑问句,关键词重新排序并适当进行近义词替换等等。

例如:

原句:骨表面以下的骨骼实际上有着更多的矿质化,同时显示了较老的及较脆的骨骼的结构特点。

修改:目前表面的矿质化骨骼真的并不存在?当然存在!骨骼中无论是较脆或是较老的,无一不显示出它矿质化的结构特点。

技巧、复述原句

复述原句的核心是:只保留原句的核心思想,不采用它的句子结构和任何一个字,也就是用自己的话表达出原句的意思,同时尽量变换句式。

这种论文查重修改技巧实施起来颇有难度,可以正面陈述意思,也可以反面印证原意。多用此法修改几次能让你修改得更顺手,掌握此法的精髓,而且,这样改重后绝对没有任何问题。

例如:

原句:严密观察术后伤口渗血情况及石膏的完整性,避免石膏折断和小便污染。

修改:外科治疗后患者的创口会有流血与石膏脱落问题,应严格的跟踪,防止出现创口处石膏与代谢废物的破坏。

技巧、加字

加字的核心是:可以在句子中插入一个或多个文字,打断查重引擎的查重抄袭率检验系统。因为查重引擎的判定抄袭的规定是连续n个字相同即抄袭,那么,如果超过这n个字,则有可能难以检测。而且,当论文字数偏少时,还可以帮助增加几千上万字。

例如:

原句:A组经过早期的肉芽组织形成阶段,在术后第4周完全填充关节软骨缺损区,且与周围组织连接紧密,细胞周围有典型的软骨陷窝及软骨囊,细胞胞突明显,整个细胞被胶原原纤维环绕;

修改:A组经过了最早期的局部与整体肉芽组织的逐步形成阶段,进而在手术后的第4周就已经完全的填充好了关节软骨的病灶与缺损区,而且与骨膜周围的组织生长完好、连接紧密,在细胞的周围伴生有典型的人体骨骼软骨组织陷窝以及关节软骨囊,且细胞的胞突十分明显,观察细胞后发现整个细胞都被胶原类的原纤维组织所环绕;字数增加了不少,抄袭率问题也迎刃而解。

技巧、更改关键词

更改关键词的核心是:将关键词用同义词替换,尽量不使用原来出现的文字。该技巧主要是针对论文查重引擎是通过对主谓宾定状补等实词或虚词作为关键词,连续2个或3个关键词相同(哪怕中间有间隔)即为抄袭的原理所总结得出的。

例如:

原句:医护人员必须掌握小儿生理解剖特点和生长发育特点,了解小儿生理、心理状态,对小儿骨科手术进行全方位的麻醉护理。

修改:救治者(替换医护人员)应该(替换必须)了解(替换掌握)孩子(替换小儿)身体结构(替换生理解剖特点)及成长规律(替换生长发育特点),通晓(替换了解)孩子身心情况(替换生理心理状态),实施全面的(替换全方位)的骨科麻醉手术(组合后替换)。

技巧、图表转化法

对于论文中数据部分和表格重复怎么办?只要老师没有明确要求必须用文本描述,就可以把这部分的数据制作成表格或柱状图表,注意行列对应;标红的表格做成图片,在做成图片时尽量把表格里面的行列互换一下。目前来看,这种方法是非常可行的,因为论文查重软件图片暂时无法检测。

以上总共五个论文降重技巧和两个论文降重软件的种降重模式,保持好心态耐心使用修改快速降重超好用!

最后,分享几个免费论文查重网站:

Checkbug:每天免费查重一篇!

蝌蚪论文:每天免费查重一篇

学信网万方:应届生免费查一篇

结语

总结复盘这些论文降重过程经验,以便以后还有论文降重时即使用上,也许这些方法也并不完美,但是我相信也一定会帮到毕业学子。都祝愿大家学业有成,顺利毕业!

<think>嗯,用户问的是AIGC的原理,特别是文本去的机制算法原理。我需要先理解AIGC是什么,对吧?根据提供的引用,AIGC是使用AI生成内容,比如用Transformer模型GAN。的话,应该是指去除复内容,或者让生成的文本更独特,避免抄袭。 首先,可能需要了解自然语言处理(NLP)中的去技术。比如引用3提到分词、词性标注、命名实体识别等,这些可能是预处理步骤。然后,具体到去,可能有几种方法:比如基于哈希的指纹识别,或者语义相似度计算。比如SimHash算法,用来生成文档指纹,快速比较相似性。另外,深度学习模型如BERT可能用来捕捉语义信息,判断文本是否复。 用户可能想知道AIGC在生成时如何避免复,或者在生成后如何检测去除复。可能涉及到生成模型的训练,比如在训练时加入去的目标,或者在生成后处理阶段应用去算法。例如,Transformer模型在生成文本时可能会使用beam search或者抽样方法,结合n-gram惩罚来减少复。 另外,引用4提到医学文本分析,可能相关的技术是信息抽取,但不确定。引用5讲的是校对步骤,比如检查一致性、排版等,可能也属于后期处理的一部分,比如使用工具检查重复并修改。 需要组织这些点,分步骤解释AIGC机制,可能包括预处理、生成阶段策略、后处理技术。还要结合提到的算法,比如SimHash、BERT、n-gram惩罚等。同时要引用提供的参考文献,比如引用3的自然语言处理算法,引用1的TransformerGAN模型的应用。 可能用户的实际需求是了解如何用AIGC技术低文本复率,比如学术写作或内容生成中的去。需要确保回答覆盖技术原理应用场景,同时结构清晰,分点说明。</think>### AIGC文本去的原理与机制 AIGCAI生成内容)的文本去机制主要通过**语义分析与生成优化**实现,其核心依赖于自然语言处理(NLP)算法深度学习模型。以下是具体原理的分步说明: --- #### 1. **文本特征提取与编码** - **分词与向量化**:首先将文本分割为单词或短语(分词),并通过词嵌入(如Word2Vec、BERT)将其映射为高维向量。例如,句子“深度学习需要大量数据”会被转换为向量序列$[v_1, v_2, \dots, v_n]$[^3]。 - **语义编码**:使用Transformer等模型对文本整体语义编码,生成固定长度的向量表示。例如,BERT模型可输出句子的上下文相关向量$h \in \mathbb{R}^{d}$[^1]。 --- #### 2. **相似度计算与复检测** - **局部复检测**:通过n-gram匹配或哈希算法(如SimHash)快速识别字面复片段。例如,两段文本的SimHash值若汉明距离小于阈值,则判定为复。 - **语义复检测**:计算编码向量的余弦相似度。若两段文本的向量满足$\cos(\theta) > 0.8$,则可能被判定为语义复。 --- #### 3. **生成阶段的去控制** - **模型训练优化**:在训练生成模型(如GPT)时,通过损失函数引入惩罚项,复n-gram的概率。例如,损失函数可表示为: $$ \mathcal{L} = \mathcal{L}_{\text{CE}} + \lambda \sum_{t} \mathbb{I}(\text{复}) $$ 其中$\lambda$为惩罚系数。 - **解码策略**:在生成时使用Top-k采样或核采样(Nucleus Sampling),避免模型陷入复循环。例如,核采样仅保留概率累积超过阈值$p=0.9$的候选词。 --- #### 4. **后处理去技术** - **规则过滤**:基于正则表达式或关键词黑名单删除冗余短语(如“显然”“因此”的过度使用)[^5]。 - **改写与融合**:利用文本复述模型(如T5)将复段落改写为语义相同但表述不同的内容。例如,将“AIGC依赖深度学习”改写为“生成式AI的核心技术包括深度神经网络”。 --- #### 典型算法示例 1. **SimHash** 生成文本指纹并比较汉明距离,适用于大规模去: $$ \text{指纹} = \text{sign}(\sum_{i} w_i v_i) $$ 其中$w_i$为词频权,$v_i$为词向量[^3]。 2. **BERTScore** 基于预训练模型的语义相似度评估: $$ \text{BERTScore} = \frac{1}{n} \sum_{i} \max_{j} \cos(h_i, h_j') $$ 其中$h_i$$h_j'$为两段文本的编码向量。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值