- 博客(2)
- 收藏
- 关注
原创 入门机器学习笔记(二)kNN - k近邻学习
(二)k近邻学习基本描述 基本描述 描述: k近邻(kNN)学习是一种常见的监督学习算法 工作机制 给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后基于这k个 “邻居” 的信息来进行预测 通常,在分类任务中,可以使用 “投票法” ,即选择k个样本的实值输出标记的平均值作为预测结果; 还可以基于距离的远近进行加权平均或加权投票,即距离越近的样本权重越大 惰性学习: 即此类学习技术在训练阶段仅仅是把样本保存起来,训练时间开销为零,待收到测试样本后再进行处理 优点: 天然的可以解决多分类问
2021-02-15 16:53:46 371 1
原创 入门机器学习笔记(一)模型评估与选择
机器学习(一)模型评估与选择一:机器学习算法分类1.1 经验误差与过拟合1.2 评估方法1.3 性能度量(performance measure) 一:机器学习算法分类 1.1 经验误差与过拟合 错误率(error rate): 分类错误的样本数占样本总数的比例。 精度(accuracy): 1 - 错误率 误差(error): 学习器的实际预测输出与样本的真实输出之间的差异称为误差。 训练误差(training error) / 经验误差(empirical error): 学习器在训练集上的误差
2021-02-14 20:56:03 414
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人