【Python】学习Python之前你需要知道的
注意:
本教程适合零基础Python,可以使用本教程。
当然本系列文章拥有前置内容铺垫(可以选择),具体前置内容请依次参考以下系列:
当你学习完上述内容后,再来学习Python或许会有更好的理解。
前言
Python是一门面向对象的,语法简洁的,跨平台和可扩展的开源通用脚本语言,广泛应用于数据科学、人工智能、Web 开发、自动化脚本等多个领域。

Python 之所以深受开发者喜爱,主要有以下几个特点:
- 简洁易读:Python 采用简洁的语法,使代码更易于编写和理解。
- 跨平台:Python 代码可以在 Windows、Linux 和 macOS 等不同操作系统上运行。
- 强大的标准库:Python 自带丰富的标准库,能够处理文件操作、网络编程、数据解析等任务。
- “高效率”:这里的高效率指的是程序员在研究语法和使用上的高效,学习者不必花太多时间在学习这门语言上,而是可以快速进入编写自己程序的阶段。
- 强融合性:Python可以很好地和其他语言结合使用,从而实现更多多元化的功能。
- 广泛的应用场景:Python 在 Web 开发、人工智能、数据分析、自动化运维等领域都有广泛应用。
作为初学者,Python的出现使得编写程序的门槛变低,同时也更加容易上手。如果你仅仅是想要学习一门编程语言,或是用来提高工作效率、或是用来锻炼编程所带来的理性思维、亦或者是培养一个特长,Python都是不二之选;当然,对于程序员而言,掌握一定的Python知识也是有必要的,它可以帮助你在今后的工作学习生涯中有所显著帮助,甚至有可能成为你工作的主要编程语言。
Python的历史
Python 由荷兰计算机科学家 Guido van Rossum(人称龟叔) 于 1989 年开发,并在 1991 年正式发布。它的设计目标是提供一种简洁、易读且功能强大的编程语言。
- 1991 年:Python 0.9.0 发布,支持异常处理、函数、核心数据类型(如列表、字典等)。
- 2000 年:Python 2.0 发布,引入了垃圾回收和列表推导式等新特性。
- 2008 年:Python 3.0 发布,带来了更一致的语法改进,如
print()
变为函数、改进 Unicode 处理等。 - 2020 年:Python 2.7 停止维护,所有用户被建议迁移到 Python 3。
- 现今:Python 持续发展,广泛应用于数据科学、人工智能、Web 开发等多个领域,并拥有活跃的社区支持。
Python 版本选择
目前 Python 主要有两个版本:Python 2 和 Python 3。Python 2 已停止维护,因此建议学习和使用 Python 3,它拥有更多特性和更好的支持。
Python 的安装与开发环境
在正式编写 Python 代码之前,你需要安装 Python 并选择合适的开发工具:
- 安装 Python:可以从Python 官方网站下载并安装最新版本。
- 选择开发工具:
- IDLE(Python 自带的开发环境)
- VS Code(轻量级的代码编辑器,支持 Python 插件)
- PyCharm(功能强大的 Python 专用 IDE)
- Jupyter Notebook(适用于数据分析和机器学习)
Python的学习(给自己看)
-
先把环境安装,开始编写第一个Python代码,别再去等明天了
-
学习过程中切勿只看视频(书籍),喝着奶茶,就是一天,一定要动手敲代码啊
-
通常先了解Python基础语法,推荐MOOC北理工嵩天老师的视频和runoob语法,当然B站和CSDN上也有很多免费资料,大家可以去选择
-
基础语法大致掌握后可以尝试学习Python网络爬虫,因为不论是数据分析、机器学习、渗透测试等,都会涉及到爬虫技术,只有拥有自己的语料,才能处理更多问题。爬虫方面不用太深入,掌握两门技术即可
-
Urllib、Requests、BeautifulSoup、XPath、Selenium、Scrapy、分布式爬虫
-
接下来学习Python可视化分析(词云)、微信操作、邮箱发送等功能,这些知识能有效提高你的编程兴趣
-
人工智能方向:包括机器学习(回归 | 聚类 | 分类)、深度学习(TensorFlow | Keras | Pytorch)学习,建议结合实际科研或项目进行深入研究
-
图像识别方向:包括图像处理、OpenCV、模式识别、机器学习、深度学习、目标检测学习,也建议结合实际科研或项目进行深入研究
-
其他方向学习:Web网站开发、网络安全、自动化测试、应用程序编写
养成良好的编程习惯
- 遵循 PEP 8 代码规范:Python 有一套官方的代码风格指南(PEP 8),遵循规范可以让代码更加整洁易读。
- 多实践、多编写代码:光看教程是不够的,只有多写代码才能真正掌握 Python。
- 调试与错误排查:学会使用
print()
、pdb
调试器以及日志工具来排查代码错误。 - 掌握版本控制工具:学习 Git 和 GitHub,有助于管理代码并与他人协作。
了解 Python 社区与学习资源
Python 拥有庞大的社区,初学者可以通过以下渠道获取学习资源和帮助:
- 官方文档:Python 官方文档是学习 Python 的权威指南。
- 在线课程:如 Coursera、Udacity、YouTube 上的 Python 教程。
- 编程练习:可以在 LeetCode、HackerRank、CodeWars 等平台练习 Python 编程。
- 社区支持:如 Stack Overflow、Reddit、Python 论坛等,可以向经验丰富的开发者寻求帮助。
总而言之,Python的学习路径还是比较清晰的,但是随着科技进步和社会发展,将会有越来越多的新知识被创造和使用,保持一个持续学习的心态,稳健的脚步,方是一个编程学习者的优良品质。
接下来,让我们正式开始进入Python的学习吧。
随着科技进步和社会发展,将会有越来越多的新知识被创造和使用,保持一个持续学习的心态,稳健的脚步,方是一个编程学习者的优良品质。
接下来,让我们正式开始进入Python的学习吧。