7-5 黑洞数 (15 分)
黑洞数也称为陷阱数,又称“Kaprekar问题”,是一类具有奇特转换特性的数。
任何一个各位数字不全相同的三位数,经有限次“重排求差”操作,总会得到495。最后所得的495即为三位黑洞数。所谓“重排求差”操作即组成该数的数字重排后的最大数减去重排后的最小数。(6174为四位黑洞数。)
例如,对三位数207:
第1次重排求差得:720 - 27 = 693;
第2次重排求差得:963 - 369 = 594;
第3次重排求差得:954 - 459 = 495;
以后会停留在495这一黑洞数。如果三位数的3个数字全相同,一次转换后即为0。
任意输入一个三位数,编程给出重排求差的过程。
输入格式:
输入在一行中给出一个三位数。
输出格式:
按照以下格式输出重排求差的过程:
序号: 数字重排后的最大数 - 重排后的最小数 = 差值
序号从1开始,直到495出现在等号右边为止。
输入样例:
123
输出样例:
1: 321 - 123 = 198
2: 981 - 189 = 792
3: 972 - 279 = 693
4: 963 - 369 = 594
5: 954 - 459 = 495
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int a[5], t;
int cal(int x, int &Max, int &Min)
{
t = 0;
memset(a, 0, sizeof(a));
while(x) //分离数字
{
a[t++] = x%10;
x /= 10;
}
sort(a,a+3); //对分离的数字排序
Max = a[2]*100 + a[1]*10 + a[0];
Min = a[0]*100 + a[1]*10 + a[2];
return Max-Min;
}
int main()
{
int n, Max, Min;
cin>>n;
for(int i = 1;;i++)
{
if(!cal(n,Max,Min) || (n == 495 && i != 1)) break; //这里有坑,如果初始的n为495也要输出
cout<<i<<":"<<" "<<Max<<" - "<<Min<<" = "<<cal(n,Max, Min)<<endl;
n = cal(n, Max, Min);
}
return 0;
}