numpy中的array,arange和range

本文详细介绍了NumPy库中的array、arange和Python内置的range函数的使用方法及区别。array适用于创建多维数组,arange则提供了一种灵活的方式生成数值范围,而range主要用于生成整数序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

numpy中的array,arange和range

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


一.array用法

话不多说,先上代码:

import numpy as np
a = np.array([1,2,3])
b = np.array([[1,2,1],[2,3,2]]) 
c = np.array([[[1,2,3],[4,5,6]],[[7,8,9],[0,1,2]],[[3,4,5],[6,7,8]]])

括号内部直接写数组[a,b,…],数组维度随着[]嵌套层数增加而增加。

二.arange用法

代码如下(示例):

import numpy as np
a = np.arange(5)
b = np.arange(1,5)
c = np.arange(0, 5, 0.2)

共三种使用方式,
第一种为一个参数,运行结果为生成一位数组[0 1 2 3 4]。
第二种为两个参数,运行结果为[1 2 3 4],意思是从1到
4,注意不包括右边界。
第三种增加了间隔0.2,与matlab中矩阵定义相类似。运行结果为:[0 0.2 0.4……5.8]。注意最后一个元素是以右边界为整数部分的最大值。

三.range用法

"range(5)
[0,1,2,3,4]
range(1,6)
[1,2,3,4,5]
range(0,20,5)
[0,5,10,15]
range(0,-5,-1)
[0,-1,-2,-3,-4]
range(0)
[]

由代码可以看出与arange非常类似,同样步长默认唯一,起始值默认为0.

总结

array用法直观上更为直接,而arange用法更为灵活方便,与参数个数有关。arange比range更强的优势在于其可以以小数为间隔。

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值