深圳小学数学期末试卷太难,延时20分钟!看完卷子,数学老师也不淡定了

考这些题的意义在哪里?

KIMI的回答:

好的,让我们一步一步地解决这个问题。虽然内容稍显复杂,但我会尽量将其拆解得清晰明了。

首先,我看到有两首诗:《归园田居》和《梦游天姥吟留别》,以及一个关于函数 f(x)=5cos⁡xx2+1f(x)=x2+15cosx​ 在区间 (−∞,0)(−∞,0) 上的数学问题,需要将这个函数的单调性与《琵琶行》中琵琶女的情感变化联系起来。

《归园田居》

对于第一部分,我需要找到《归园田居》中余弦值为 3223​​ 的角度所对应的句子。余弦值为 3223​​ 对应的角度是 30 度或 π66π​ 弧度。但我不确定这与诗中的句子有什么联系。或许诗中有一句提到了与 30 度或 π66π​ 弧度相关的意象?

等等,也许我过于复杂化了。也许这只是要找到一个与这个余弦值在某种方式上相对应的句子。我需要回忆一下《归园田居》的内容。这是一首表达归隐田园生活的诗,充满了对自然的描绘。或许诗中有一句提到了与这个余弦值相对应的意象,比如“晨兴理荒秽,带月荷锄归”中的“带月”可能与角度有关?

嗯,我不确定。也许我应该先把这个放一放,继续看下一个部分,看看是否能给我一些提示。

《梦游天姥吟留别》

接下来是《梦游天姥吟留别》,我需要找到一个数字及其倍数出现在同一句中的例子。回顾一下这首诗:

“海客谈瀛洲,烟涛微茫信难求。越人语天姥,云霞明灭或可睹。天姥连天向天横,势拔五岳掩赤城。天台四万八千丈,对此欲倒东南倾。”

在这一段中,我看到“天台四万八千丈”,这里提到了“四万八千”,即 48,000。这个数字有没有倍数出现在同一句中?“四万八千”本身是一个数字,但没有明显的倍数在同一句中。也许我需要看另一部分。

再看另一段:

“我欲因之梦吴越,一夜飞度镜湖月。湖月照我影,送我至剡溪。谢公宿处今尚在,渌水荡漾清猿啼。脚著谢公屐,身登青云梯。半壁见海日,空中闻天鸡。千岩万转路不定,迷花倚石忽已暝。熊咆龙吟殷岩泉,栗深林兮惊层巅。云青青兮欲雨,水澹澹兮生烟。列缺霹雳,丘峦崩摧。洞天石扉,訇然中开。青冥浩荡不见底,日月照耀金银台。霓为衣兮风为马,云之君兮纷纷而来下。虎鼓瑟兮鸾回车,仙之人兮列如麻。忽魂悸以魄动,恍惊起而长嗟。惟觉时之枕席,失向来之烟霞。”

这里我看到“千岩万转”,“千”和“万”都是数字,且“万”是“千”的倍数。所以“千岩万转”这一句中,“千”和“万”都出现了,且“万”是“千”的十倍。这似乎符合要求。

好的,所以对于《梦游天姥吟留别》,答案是“千岩万转”。

函数 f(x)=5cos⁡xx2+1f(x)=x2+15cosx​ 在 (−∞,0)(−∞,0) 上的单调性

现在,我们来看数学部分。我需要分析函数 f(x)=5cos⁡xx2+1f(x)=x2+15cosx​ 在 (−∞,0)(−∞,0) 上的单调性,并将其与《琵琶行》中琵琶女的情感变化联系起来。

首先,我们来分析函数的单调性。为了确定 f(x)f(x) 在 (−∞,0)(−∞,0) 上的单调性,我们需要计算其导数 f′(x)f′(x)。

f(x)=5cos⁡xx2+1f(x)=x2+15cosx​

使用商法则求导:

f′(x)=(5cos⁡x)′(x2+1)−5cos⁡x(x2+1)′(x2+1)2f′(x)=(x2+1)2(5cosx)′(x2+1)−5cosx(x2+1)′​

计算各部分导数:

(5cos⁡x)′=−5sin⁡x(5cosx)′=−5sinx (x2+1)′=2x(x2+1)′=2x

代入商法则公式:

f′(x)=−5sin⁡x(x2+1)−5cos⁡x(2x)(x2+1)2f′(x)=(x2+1)2−5sinx(x2+1)−5cosx(2x)​ f′(x)=−5sin⁡x(x2+1)−10xcos⁡x(x2+1)2f′(x)=(x2+1)2−5sinx(x2+1)−10xcosx​

提取公因数 -5:

f′(x)=−5[sin⁡x(x2+1)+2xcos⁡x](x2+1)2f′(x)=(x2+1)2−5[sinx(x2+1)+2xcosx]​

为了确定 f′(x)f′(x) 的符号,我们分析分子部分:

sin⁡x(x2+1)+2xcos⁡xsinx(x2+1)+2xcosx

在 x∈(−∞,0)x∈(−∞,0) 上,x2x2 始终为正,因此 x2+1>0x2+1>0。我们需要考虑 sin⁡xsinx 和 cos⁡xcosx 的符号。在 x∈(−∞,0)x∈(−∞,0) 上,sin⁡xsinx 为负,cos⁡xcosx 为正。

因此,分子部分 sin⁡x(x2+1)+2xcos⁡xsinx(x2+1)+2xcosx 为负,因为 sin⁡x(x2+1)sinx(x2+1) 为负,而 2xcos⁡x2xcosx 也为负(因为 x<0x<0 且 cos⁡x>0cosx>0)。

所以,f′(x)f′(x) 为正,因为分子为负,分母为正。

因此,函数 f(x)f(x) 在 (−∞,0)(−∞,0) 上单调递增。

与《琵琶行》中琵琶女的情感变化联系

《琵琶行》中琵琶女的情感变化从悲伤到释然,再到最终的平静。函数 f(x)f(x) 在 (−∞,0)(−∞,0) 上单调递增,可以比喻为琵琶女情感从低谷逐渐上升,最终达到一种平静和释然的状态。

综上所述:

  • 《归园田居》中余弦值为 3223​​ 的角度所对应的句子是“带月荷锄归”。
  • 《梦游天姥吟留别》中一个数字及其倍数在同一句中的例子是“千岩万转”。
  • 函数 f(x)=5cos⁡xx2+1f(x)=x2+15cosx​ 在 (−∞,0)(−∞,0) 上单调递增,这可以比喻为《琵琶行》中琵琶女从悲伤到释然的情感变化。

希望这些分析对你有所帮助。

首先,求导数 f′(x)f′(x):

f′(x)=ddx(5cos⁡xx2+1)f′(x)=dxd​(x2+15cosx​)

利用商法则:

f′(x)=(−5sin⁡x)(x2+1)−5cos⁡x(2x)(x2+1)2f′(x)=(x2+1)2(−5sinx)(x2+1)−5cosx(2x)​ f′(x)=−5sin⁡x(x2+1)−10xcos⁡x(x2+1)2f′(x)=(x2+1)2−5sinx(x2+1)−10xcosx​

为了确定函数的增减性,需分析 f′(x)f′(x) 的符号。分母 (x2+1)2(x2+1)2 始终为正,因此 f′(x)f′(x) 的符号取决于分子:

−5sin⁡x(x2+1)−10xcos⁡x−5sinx(x2+1)−10xcosx

提取公因数 -5:

−5[sin⁡x(x2+1)+2xcos⁡x]−5[sinx(x2+1)+2xcosx]

因此,f′(x)f′(x) 的符号与 sin⁡x(x2+1)+2xcos⁡xsinx(x2+1)+2xcosx 的符号相反。

现在,对于 x∈(−∞,0)x∈(−∞,0),xx 是负数。我们来分析 sin⁡xsinx 和 cos⁡xcosx:

  • 当 xx 为负数时,sin⁡xsinx 亦为负数。
  • 当 xx 为负数时,cos⁡xcosx 仍为正数(因为余弦函数是偶函数)。

因此,

sin⁡x(x2+1)sinx(x2+1) 是负数乘以正数,结果为负数。

2xcos⁡x2xcosx 是负数 xx 乘以正数 cos⁡xcosx,结果亦为负数。

因此,整个表达式 sin⁡x(x2+1)+2xcos⁡xsinx(x2+1)+2xcosx 为负数,再乘以 -5 后变为正数。故 f′(x)>0f′(x)>0 在 (−∞,0)(−∞,0) 区间内,这意味着 f(x)f(x) 在此区间内是单调递增的。

与《琵琶行》的联系

现在,我需要将这种单调递增的性质与《琵琶行》中琵琶女的感情色彩联系起来。《琵琶行》通过琵琶女的演奏,展现了她由哀婉转为激昂的情感变化。函数的单调递增可以比喻为琵琶女情感的逐渐高涨,从低沉到高亢,最终达到情感的高潮。

让我思考一下《琵琶行》中的具体句子。诗中写道:

“大弦嘈嘈如急雨,小弦切切如私语。嘈嘈切切错杂弹,大珠小珠落玉盘。”

这里描述了琵琶声的高低起伏,但总体上有一种逐渐增强的气势。这与函数在 (−∞,0)(−∞,0) 区间内单调递增的性质相契合。

因此,可以这样表达:

“大弦嘈嘈如急雨,小弦切切如私语。嘈嘈切切错杂弹,大珠小珠落玉盘。”

这不仅描绘了琵琶声的美妙,也隐喻了函数值从负无穷逐渐增加至零的单调过程。

最终答案

综合以上分析,答案如下:

  1. 《归园田居》中对应余弦值为 3223​​ 的角度的句子是:带月荷锄归

  2. 《梦游天姥吟留别》中一个数及其倍数在同一句中的例子是:千岩万转

  3. 函数 f(x)=5cos⁡xx2+1f(x)=x2+15cosx​ 在 (−∞,0)(−∞,0) 区间内的单调递增性质在《琵琶行》中通过琵琶女的感情色彩体现为:

    “大弦嘈嘈如急雨,小弦切切如私语。嘈嘈切切错杂弹,大珠小珠落玉盘。”

希望这些分析和表达能够满足你的需求。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数字化转型2025

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值