Slick.AI用户案例-皮肤疾病图像检测辅助诊断

本文介绍了如何利用SlickAI平台加速皮肤病诊断的AI模型开发。传统的瀑布式开发需要大量时间和专家团队,但通过SlickAI,可以在1个月内完成模型训练和部署,显著提升诊断效率。该平台支持图像标记、自定义模型训练和一键式部署到网络及移动端,为皮肤科提供智能辅助诊断解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

项目概述

案例背景

21世纪医学最大进步将是在分子生物学突破的基础上,精准医学的成熟及人工智能渗透到医学的各个领域。现实应用中,诊断是一项复杂的任务。就皮肤科临床医生通常会对患者进行全面检查,才能做出诊断,同时还需要参与的医生具有至少十年以上皮肤病症诊断经验。

项目需求

现状,需要耗费大量人力和时间对皮肤状况的图片进行分析和判断。需求可以通过专家标记,并使用Slick AI平台训练定制的AI模型。这些模型被组合成一个人工智能管道,并通过我们的一键式部署服务部署到网络和移动端,实现人工智能协助诊断。

AI解决方案

Slick AI为皮肤病疾病特征的归纳和疾病诊断模型的建立提供专业的支持。并通过海量病例图像的学习实现对皮肤病症的人工智能辅助诊断。

•用Slick AI进行图像标记

•用Slick AI训练的自定义模型 

•一键式部署到网络和移动应用程序 

•1个月完成整体的模型建立和部署 

如果采用传统瀑布式开发流程,不仅需要一整个AI专家团队,耗时9个月以上。并且还需要冗长的程序调式阶段。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值