问题描述
某国的军队由N个部门组成,为了提高安全性,部门之间建立了M条通路,每条通路只能单向传递信息,即一条从部门a到部门b的通路只能由a向b传递信息。信息可以通过中转的方式进行传递,即如果a能将信息传递到b,b又能将信息传递到c,则a能将信息传递到c。一条信息可能通过多次中转最终到达目的地。
由于保密工作做得很好,并不是所有部门之间都互相知道彼此的存在。只有当两个部门之间可以直接或间接传递信息时,他们才彼此知道对方的存在。部门之间不会把自己知道哪些部门告诉其他部门。
上图中给了一个4个部门的例子,图中的单向边表示通路。部门1可以将消息发送给所有部门,部门4可以接收所有部门的消息,所以部门1和部门4知道所有其他部门的存在。部门2和部门3之间没有任何方式可以发送消息,所以部门2和部门3互相不知道彼此的存在。
现在请问,有多少个部门知道所有N个部门的存在。或者说,有多少个部门所知道的部门数量(包括自己)正好是N。
输入格式
输入的第一行包含两个整数N, M,分别表示部门的数量和单向通路的数量。所有部门从1到N标号。
接下来M行,每行两个整数a, b,表示部门a到部门b有一条单向通路。
输出格式
输出一行,包含一个整数,表示答案。
样例输入
4 4
1 2
1 3
2 4
3 4
样例输出
2
样例说明
部门1和部门4知道所有其他部门的存在。
评测用例规模与约定
对于30%的评测用例,1 ≤ N ≤ 10,1 ≤ M ≤ 20;
对于60%的评测用例,1 ≤ N ≤ 100,1 ≤ M ≤ 1000;
对于100%的评测用例,1 ≤ N ≤ 1000,1 ≤ M ≤ 10000。
分析
每个点跑一反一正两趟DFS,看看是否所有点都访问过。
代码
#include<iostream>
#include<vector>
#include<cstring>
using namespace std;
const int MAX_N=1e3+7;
vector<int> G[MAX_N],rG[MAX_N];
int n,m,vis[MAX_N],rvis[MAX_N];
void dfs(int u)
{
vis[u]=1;
for(int i=0;i<G[u].size();i++)
if(!vis[G[u][i]])
dfs(G[u][i]);
}
void rdfs(int u)
{
rvis[u]=1;
for(int i=0;i<rG[u].size();i++)
if(!rvis[rG[u][i]])
rdfs(rG[u][i]);
}
int main()
{
int u,v,ans=0;
cin>>n>>m;
for(int i=0;i<m;i++)
{
cin>>u>>v;
G[u].push_back(v);
rG[v].push_back(u);
}
for(int i=1;i<=n;i++)
{
int f=1;
memset(vis,0,sizeof(vis));
memset(rvis,0,sizeof(rvis));
dfs(i);
rdfs(i);
for(int j=1;j<=n;j++)
{
if(vis[j]+rvis[j]==0)
{
f=0;
break;
}
}
if(f) ans++;
}
cout<<ans;
return 0;
}
题解汇总
CCF-CSP认证历年题解