COCI 2013/2014 1st round, September 28th, 2013 解题报告

TRENER

给出一堆人的英文名字(全是小写字母),若有一些字母作为首字母出现不少于5次,则输出所有符合条件的字母。

每读入一个姓名,就给该姓名首字母的次数+1。最后扫一遍所有字母作为首字母出现的次数,大于等于5的输出。

#include<bits/stdc++.h>
#define ll long long
#define inf 999999999
using namespace std;
int n,a[28];
bool flag;
int main(){
    freopen("trener.in","r",stdin);
    freopen("trener.out","w",stdout);
    ios::sync_with_stdio(false);
    cin>>n;
    for(int i=1;i<=n;i++){
        string tmp;
        cin>>tmp;
        a[tmp[0]-'a']++;
    }
    for(int i=0;i<26;i++){
        if(a[i]>=5){
            char out=i+'a';
            cout<<out;
            flag=1;
        }
    }
    if(!flag)
        cout<<"PREDAJA";
    cout<<endl;
    return 0;
}

KUŠAČ

给出一些完全相等的香肠和参会人数,香肠需要平分给所有人,至少要切几刀可以使每个人得到等量的香肠?

模拟题,将所有香肠首尾相连成一条长香肠,给每个人按顺序切一段,若切的地方刚好是连接处,则不必计数,否则答案+1。输出答案即可。

#include<bits/stdc++.h>
#define ll long long
#define inf 999999999
using namespace std;
int n,m,ans;
int main(){
    freopen("kusac.in","r",stdin);
    freopen("kusac.out","w",stdout);
    ios::sync_with_stdio(false);
    cin>>n>>m;
    for(int i=0;i<=n*m;i+=n) if(i%m) ans++;
    cout<<ans<<endl;
    return 0;
}

RATAR

给出一个正方形中每个小方格的权值,问有多少种长方形组合,使该两个长方形权值和相等且两个长方形顶角相连。

f[i][j]表示以(i,j)为右下角的长方形的权值和。首先用求前缀和的方式求出所有的f[i][j],这样就能快速算出各个矩形的权值和。然后n^2枚举每一个点,并n^2枚举所有以该点为右下角的矩形,计算各个权值的数量。接下来n^2枚举所有以(i+1,j+1)为右上角的矩形,加上刚才算的该权值的矩形的数量。同理处理(i,j)分别为两个矩形的右下角和左上角的情况。
注意,每次枚举完一个点都要重新计数。

#include<bits/stdc++.h>
#define ll long long
#define inf 999999999
using namespace std;
const int c=2500000;
int n,f[55][55],tot,ans;
int cnt[2*c];
int cal(int x1,int y1,int x2,int y2){
    return f[x2][y2]-f[x1-1][y2]-f[x2][y1-1]+f[x1-1][y1-1];
}
int main(){
    freopen("ratar.in","r",stdin);
    freopen("ratar.out","w",stdout);
    ios::sync_with_stdio(false);
    cin>>n;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            cin>>f[i][j];
    for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            f[i][j]+=f[i][j-1];
    for(int j=1;j<=n;j++)
        for(int i=1;i<=n;i++)
            f[i][j]+=f[i-1][j];
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            for(int a=1;a<i;a++)
                for(int b=1;b<j;b++)
                    cnt[cal(a,b,i-1,j-1)+c]++;
            for(int a=i;a<=n;a++)
                for(int b=j;b<=n;b++)
                    ans+=cnt[cal(i,j,a,b)+c];
            for(int a=1;a<i;a++)
                for(int b=1;b<j;b++)
                    cnt[cal(a,b,i-1,j-1)+c]--;
            for(int a=i;a<=n;a++)
                for(int b=1;b<j;b++)
                    cnt[cal(i,b,a,j-1)+c]++;
            for(int a=1;a<i;a++)
                for(int b=j;b<=n;b++)
                    ans+=cnt[cal(a,j,i-1,b)+c];
            for(int a=i;a<=n;a++)
                for(int b=1;b<j;b++)
                    cnt[cal(i,b,a,j-1)+c]--;
        }
    }
    cout<<ans<<endl;
    return 0;
}

LOPOV

给出一些物品的重量和权值,给出一些背包的容量,且每个背包最多放一件物品,求能装下的物品的权值和最大是多少。

将每个背包当做权值为-1的物品, 与其他物品一起,按照重量由小到大排序,若重量相等,则按权值由大到小排序(确保同重量的时候背包在物品后)。建立一个优先队列,遍历所有物品和背包,若权值不为-1,即该物品不为背包,则将该物品的权值加入优先队列;若权值为-1,该物品为背包,则将优先队列队首的元素取出加入答案。(这个方法跑的比标程快233)

#include<bits/stdc++.h>
#define ll long long
#define inf 999999999
using namespace std;
const int M=600005;
int n,k;
ll ans;
struct no{
    int m,v;
}a[M];
priority_queue<int> q;
bool cmp(no a,no b){
    return a.m!=b.m?a.m<b.m:a.v>b.v;
}
int main(){
    freopen("lopov.in","r",stdin);
    freopen("lopov.out","w",stdout);
    ios::sync_with_stdio(false);
    cin>>n>>k;
    for(int i=1;i<=n;i++)
        cin>>a[i].m>>a[i].v;
    for(int i=1;i<=k;i++){
        cin>>a[i+n].m;
        a[i+n].v=-1;
    }
    sort(a+1,a+n+k+1,cmp);
    for(int i=1;i<=n+k;i++){
        if(a[i].v!=-1)
            q.push(a[i].v);
        else if(!q.empty()){
            ans+=q.top();
            q.pop();
        }
    }
    cout<<ans<<endl;
    return 0;
}

ORGANIZATOR

给出若干个俱乐部的人数,由你制定每个比赛队伍的人数,每个队伍的人必须来自同一个俱乐部,若某个俱乐部的成员不能全员参加比赛,该俱乐部便不会参加比赛。每个俱乐部的排名第一的队伍将进入比赛(若进入决赛的队伍少于2支便不算决赛)。求问最多能有多少人数进入决赛。

转化一下,其实这道题便是给出一堆数字,求找一个数,使能整除该数的数的个数(必须不小于2)*该数的值最大,输出这个最大值。
对输入的每个数进行计数,然后开始从1到2000000枚举数i,将所有是i的倍数的数的数量加和,若数量和*i大于当前答案则更新答案。

#include<bits/stdc++.h>
#define ll long long
#define inf 999999999
using namespace std;
const int M=2000005;
int n,a[M];
ll ans;
int main(){
    freopen("organizator.in","r",stdin);
    freopen("organizator.out","w",stdout);
    ios::sync_with_stdio(false);
    cin>>n;
    for(int i=1;i<=n;i++){
        int x;
        cin>>x;
        a[x]++;
    }
    for(int i=1;i<=2000000;i++){
        int cur=0;
        for(int j=i;j<=2000000;j+=i)
            cur+=a[j];
        if(cur>1) ans=max(ans,(ll)cur*i);
    }
    cout<<ans<<endl;
    return 0;
}

SLASTIČAR

给出一个A串,和一些B串,开始进行匹配,匹配方法是对于逐位对比,若有某一位不同则从起始位置的下一位开始重新匹配(也就是暴力匹配),若匹配成功或匹配到A串尾依然无法匹配成功,则停止匹配。每匹配一位消耗1单位时间,分别求出匹配每个串的时间。

正在研究中,稍后奉上。

### 回答1: 题目描述: Eko 有一排树,每棵树的高度不同。他想要砍掉一些树,使得剩下的树的高度都相同。他希望砍掉的树的高度尽可能地少,你能帮他算出最少要砍掉多少棵树吗? 输入格式: 第一行包含两个整数 N 和 M,分别表示树的数量和 Eko 希望的树的高度。 第二行包含 N 个整数,表示每棵树的高度。 输出格式: 输出一个整数,表示最少要砍掉的树的数量。 输入样例: 9 5 2 3 4 7 8 9 10 11 12 输出样例: 3 解题思路: 二分答案 首先,我们可以发现,如果我们知道了 Eko 希望的树的高度,那么我们就可以计算出砍掉多少棵树。 具体来说,我们可以遍历每棵树,如果它的高度大于 Eko 希望的树的高度,那么就将它砍掉,否则就保留它。 然后,我们可以使用二分答案的方法来确定 Eko 希望的树的高度。 具体来说,我们可以将树的高度排序,然后二分一个可能的 Eko 希望的树的高度,然后计算砍掉多少棵树,如果砍掉的树的数量小于等于 M,那么说明 Eko 希望的树的高度可能更小,否则说明 Eko 希望的树的高度可能更大。 最后,我们可以得到最少要砍掉的树的数量。 时间复杂度:O(NlogN)。 参考代码: ### 回答2: 这道题目是一道模拟题,需要模拟机器人的移动过程以及得出最终机器人的位置和朝向。首先需要明确机器人的起始位置以及朝向,其次需要读取输入的指令,根据指令逐步移动机器人,并顺便判断是否会越界或者碰到障碍物。最后输出最终机器人的位置和朝向。 在本题中,需要按照从西向东、从北向南、从东向西、从南向北的顺序判断机器人的朝向。为了方便表述,我把机器人的朝向表示为0、1、2、3,分别代表从西向东、从北向南、从东向西、从南向北。 具体地说,机器人按照指令逐步移动时需要分情况讨论,比如: 1.当前机器人朝向为0,即从西向东: 若指令为F,则x坐标+1,但需要判断是否越界或者碰到障碍物。 若指令为L,则朝向变为3。 若指令为R,则朝向变为1。 2.当前机器人朝向为1,即从北向南: 若指令为F,则y坐标-1,但需要判断是否越界或者碰到障碍物。 若指令为L,则朝向变为0。 若指令为R,则朝向变为2。 3.当前机器人朝向为2,即从东向西: 若指令为F,则x坐标-1,但需要判断是否越界或者碰到障碍物。 若指令为L,则朝向变为1。 若指令为R,则朝向变为3。 4.当前机器人朝向为3,即从南向北: 若指令为F,则y坐标+1,但需要判断是否越界或者碰到障碍物。 若指令为L,则朝向变为2。 若指令为R,则朝向变为0。 最后输出最终机器人的位置和朝向即可。 在编写程序时需要注意判断边界和障碍物,以及要用scanf读取输入,不要用C++的cin,否则会TLE。此外,由于本题没有给出边界和障碍物,需要自己设置。最后,本题的思路不难,但是需要认真仔细地处理各种情况,多测试几组数据找出程序的漏洞,这样才能通过本题。 ### 回答3: 本题为一道组合数学题,需要运用排列组合知识进行分析。 题目要求将n个方块填入3*3的网格中,每个方块可以是红色、绿色或蓝色的一个。要求每行、每列和对角线上的方块颜色都不相同。求方案总数。 首先考虑对第一行进行颜色选取。由于第一行每个位置的颜色都不影响其他行和列,故第一行的颜色选取不影响总方案数。所以假设第一行颜色已经确定,考虑第二行的颜色选取。第二行中各位置的颜色受到第一行的限制,只有第一行某位置颜色的补集才能选取。例如,若第一行第一个位置是红色,那么第二行第一个位置不能选取红色。因为每行颜色不能相同,所以第二行受到第一行限制的位置只有3个。第三行同理,由于前两行的限制,只有2个位置可选。做完颜色选取后,再将每行的方块进行排列,此时我们可以使用错排公式得到方案数: D(n) = n!(1 - 1/1! + 1/2! - 1/3! + ... + (-1)^(n)/n!) 最终,方案总数即为每个第一行颜色选取方法下的错排方案数之和。按题意枚举第一行的颜色,就可以得到最终的方案总数了。 总结一下,本题所需要的知识点为:错排公式、颜色限制对组合数的影响、暴力枚举法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值