得物基于AIGC生成测试用例的探索与实践

一、背景

随着人工智能技术的快速发展,尤其是在自然语言处理(NLP)、计算机视觉和生成对抗网络(GANs)等领域,AIGC(AI Generated Content)得到了广泛应用,这一技术的进步使得内容创作变得更加高效与多样化,推动了各个行业的创新与变革。对于测试而言,基于AI进行测试用例生成也逐渐从梦想变成现实。

传统问题

目前我们在编写测试用例时,大部分依赖人工编写,在实际编写过程中主要存在以下问题:

  1. 用例编写量大:传统的测试用例编写方法通常会耗费测试人员大量的时间和精力,编写效率不高;
  2. 编写颗粒度粗:由于时间有限,手工编写测试用例可能存在部分测试场景的遗漏,如边界场景、异常场景等;
  3. 维护成本高:不同测试同学编写习惯不同,导致部分用例的可读性较差,增加后期维护成本。

因此,借助AI技术自动生成初步的测试用例,随后由测试人员进行审核和优化,可以显著缩短用例的准备时间,提高测试工作的效率。

目标

利用AI技术自动生成测试用例,缩短编写测试用例的时间;

通过AI辅助生成测试用例,提升测试用例的覆盖范围和可读性。

二、方案

技术实现

技术实现.jpg

“RAG:指的是检索增强生成(Retrieval-Augmented Generation),这是一种结合了信息检索和文本生成的技术,通过检索相关信息来增强生成模型的能力,提高生成文本的相关性和准确性。”

“LLM:指的是“大型语言模型”(Large Language Model),这些模型是基于深度学习技术构建的,专注于自然语言处理(NLP),能够处理和生成自然语言文本数据。”

核心功能介绍

核心功能介绍.jpg

整个AI生成测试用例的功能主要分为三个方面:

  1. 用户输入:提供AI对话框,可供用户从需求PRD中复制粘贴功能点,实现快速输入;
  2. 测试点分析整合:提供智能提取测试点和专家经验介入的能力,用户可以对AI生成的测试点进行灵活调整;
  3. 用例生成:基于调整好的测试点自动生成对应的测试用例,并可一键同步至平台,方便后续的管理和使用。

使用流程

使用流程.jpg

需求输入

1.选择相关需求的用例模块,点击“AI生成用例”按钮跳转至AI生成用例交互页面:

需求输入.jpg

2.从需求PRD复制功能点,粘贴到输入框并发送:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值