- 博客(9)
- 收藏
- 关注
原创 得物可观测平台架构升级:基于GreptimeDB的全新监控体系实践
磁盘缓存的数据来源通常是对象存储,其类似于操作系统的 page cache,只不过 page cache 是利用内存加速磁盘数据的访问,而 GreptimeDB 的这部分缓存则是利用磁盘加速对象存储的访问,将频繁访问的文件按范围缓存到磁盘可以实现更低的查询延迟,并且能够智能根据访问模式实现预取(prefetch)、IO 合并等优化。结构化缓存则是文件、索引的内容或元数据反序列化得到的结构体,这些数据在查询剪枝时频繁被用到,因此 GreptimeDB 缓存了反序列化之后的结构,避免频繁反序列化带来的开销。
2025-04-30 14:55:33
1709
原创 得物业务参数配置中心架构综述
本文简要描述了业务参数配置中心的设计思路,参数配置中心配套生成增、删、改、查、导入、导出服务,并且结合前端低代码平台自动生成前端代码,平台目前业务参数中心已经有40+个场景接入节省了大量的工作人日,能够让研发人员,摆脱低效的CRUD,更专注于自己内部业务逻辑的开发。持续增加SDK的查询灵活性:包括不限于批量代参数优先级对数据进行查询、通过SDK分页查询全量参数、对系统字段吐出方便业务方使用;持续增加对方案定义的灵活性:支持更多的元素范围的定义,比如HTTP等调用方式;
2025-04-24 09:36:39
1600
原创 得物增长兑换商城的构架演进
本文讲述了增长兑换商城整体的业务框架及部分功能的实现细节。兑换商城作为一个中台,承接了不同上下游提出的需求,很多功能的实现都需要考虑到通用性及拓展性,而一些复杂需求或功能的实现,是否会加重配置的难度,影响后续业务方的接入成本,都是需要在项目迭代中不断思考的问题。不仅如此,在迭代过程中的稳定性保障也会是商城自始至终的基本要求。
2025-04-22 10:51:56
1679
原创 DGraph4.0推荐核心引擎升级之路 | 得物技术
DGraph是得物自主研发的新一代推荐系统核心引擎,基于C++语言构建,自2021年启动以来,经过持续迭代已全面支撑得物社区内容分发、电商交易等核心业务的推荐场景。DGraph在推荐链路中主要承担数据海选和粗排序功能,为上层精排提供高质量候选集。核心技术特性:索引层 - 支持KV(键值)、KVV(键-多值)、INVERT(倒排)、DENSE-KV(稠密键值)等。索引存储支持磁盘 & 内存两种模式,在预发等延迟压力低场景,通过磁盘索引使用低规格服务器提供基本服务。
2025-04-17 09:44:58
1508
原创 如何合理规划Elasticsearch的索引|得物技术
下面会针对索引的组成和基本结构结合官方文档逐一介绍。基本概念index(索引)是索引是具有相似特征的文档(Document)集合,类似于关系型数据库中的表。每个索引都具有自己唯一的名称与_id。并且可以进行不同的参数配置与mapping映射。以适应不同的业务场景。索引中的最小单位是文档。每一条文档(doc)都是一个json格式的数据对象。包含了实际的具体数据以及该数据所对应的元数据。文档可以是结构化,半结构化或非结构化的数据。索引在elasticsearch中被用于存储,检索与分析数据。
2025-04-15 10:30:00
2188
原创 DPP推荐引擎架构升级演进之路|得物技术
DPP编排引擎经历了固定编排,灵活编排到图化DAG编排三个阶段,持续提升策略迭代效率。图化DAG编排在我们落地的一些场景中显著提升了性能,同时新的开发模式要求策略同学关注算子级别的实现,减少对调度逻辑的关注。在产品侧DPP-后台提供了产品化工具支持本地调试和可视化管理。未来我们可以进一步探索图化DAG编排在更多业务场景中的应用,尤其是需要高性能和灵活定制的场景。
2025-04-10 09:41:37
2172
原创 Cursor 在前端需求开发工作流中的应用|得物技术
所有事都有吃力不讨好的部分,随着 Cursor 等 AI 工具在工程中的应用,我们可以逐渐将这部分职能分配出去,利用我们的知识储备,描述问题,引导过程,审核结果。工具的使用始终是为了节省人类体力和脑力的开销,从而在提升体验的同时提升生产力,以更充沛的精力聚焦在工作成果和个人成长上。
2025-04-08 09:49:39
1766
原创 得物 iOS 启动优化之 Building Closure
得物一直重视用户体验,尤其是启动时长这一重要指标。在近期的启动时长跟进中,我们发现了在BuildingClosure 阶段的一个优化方式,成功的帮助我们降低了 1/5 的 BuildingClosure 阶段的启动耗时。
2025-04-03 09:55:40
2118
原创 分布式数据一致性场景与方案处理分析|得物技术
随着微服务架构的普及和业务场景的复杂化,原来的原子性操作会随着系统拆分而无法保障原子性从而产生一致性问题,但业务实际又需要保障一致性,为此BASE理论提出了最终一致性来解决这类问题。那么如何在跨服务、跨数据库的事务中保证数据最终一致性。
2025-04-01 10:47:32
1471
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人