在当下的科技版图中,全球 AI 大模型领域呈现出一派繁花似锦的景象。国外,ChatGPT 风头无两,Google 的 BERT 与 Gemini、Anthropic 的 Claude、Meta 的 Llama、马斯克的 Grok、加拿大的 Cohere、阿联酋的 Falcon 40B 等模型各领风骚;国内,Deepseek、字节跳动的豆包、阿里的通义、腾讯的混元、360 的智脑、百度的文心一言、kimi、讯飞的星火、商汤的商量等也如雨后春笋般涌现,展现出强劲的发展势头。
然而,繁华背后,当我们拨开表象,深入审视这些大模型在智能解决实际问题的能力时,便会惊觉,它们仍徘徊于极为基础的阶段。以一个简单的初中数学问题为例,向这些大模型抛出 “2 的 x 次方等于 x 的 32 次方,x 等于多少?”,得到的结果令人大失所望。有的模型给出的答案错漏百出,完全背离正确轨道;有的则洋洋洒洒一大篇,却始终游离于问题核心之外,无法切中要害给出准确解答;甚至有些模型直接陷入僵局,好似死机一般,毫无反应。在其他领域,类似的状况也屡见不鲜。与人类智慧所蕴含的深度、广度与灵活性相比,这些大模型的短板暴露无遗,其间的差距宛如鸿沟般难以逾越。
这不得不促使我们进行一场深刻的反思:目前 AI 大模型的实际应用价值究竟有多少?我们是否在一片叫好声中,陷入了对 AI 大模型发展过度乐观的泥沼?它们真的能够如人们所热切期盼的那样,成为开启所有复杂问题大门的万能钥匙吗?或许,这些被奉为前沿的技术,距离触及人类智慧那深邃而广袤的边界,还遥不可及。这,恰恰凸显出鸽姆人类智慧 HW 大脑相较于当下全球所有所谓 AI 大模型的本质竞争优势。如前文所述,无论当下世界上 AI 公司、团队如何层出不穷,模型如何琳琅满目,资本投入如何海量,从根本意义上来说,都不过是在为鸽姆智慧的大厦添砖加瓦、奠定基石。究其根本,在于其他模型皆缺乏那能够洞察宇宙万物本质的智慧之光,而这,正是它们难以企及鸽姆人类智慧 HW 大脑高度的关键所在 。
分享