Leetcode 1. Two Sum

这篇博客分析了LeetCode 1. Two Sum问题的两种解决方案。第一种是通过构建字典来查找目标和,时间复杂度为O(n),但无法找到所有解。第二种方法是对数组进行排序,通过递归地缩小问题规模来寻找解,时间复杂度取决于排序算法。
摘要由CSDN通过智能技术生成

Given an array of integers, return indices of the two numbers such that they add up to a specific target.

You may assume that each input would have exactly one solution, and you may not use the same element twice.

Example:

Given nums = [2, 7, 11, 15], target = 9,

Because nums[0] + nums[1] = 2 + 7 = 9,
return [0, 1].

分析

该问题有两种解法:

  1. 构造一个字典,遍历nums,以nums的元素为键,以元素的下标为值,填充到字典中。然后遍历nums,对每个元素x,在字典中查找键target - x是否存在。如果target - x是字典的键, 找到字典中键target - x 对应的值, 即target - x的下标,如果该下标不等于x的下标,那么我们就找到了两个相加之和等于target的数组元素。时间复杂度为\Theta(n),  空间复杂度为O(n), 这是一种空间换时间的策略。要注意的是,假如nums有几个相等的元素,字典却只记录了一个下标,丢失了其他下标的信息,所以这种解法不能用来找全部解
  2. 对nums进行升序排列。考察value = nums[1] + nums[n], 如果value == target, 我们找到了解,如果value < target,第一个元素和任何元素的和都小于target,这样我们就排除了第一个元素,问题的解只能在子列nums[2...n]中;同理如果value > target,最后一个元素和任何元素的和都大于target,这样我们就排除了最后一个元素,问题的解只能在子列nums[1...n-1]中。这样,我们或者能找到解,或者把问题转化为数组长度减少的子问题, 直到数组长度减到零。该解法时间复杂度和空间复杂度由排序算法决定。

伪代码

twoSum(nums, target)
    Initialize map m
    n = nums.length
    for i = 1 to n
        m[nums[i]] = i
    for i = 1 to n
        value = target - nums[i]
        if value in m and m[value] != i
            return [i, m[value]]
    return null
twoSum(nums, target)
    sort nums by ascending order
    left = 0
    right = nums.length
    while left < right
        value = nums[left] + nums[right]
        if value == target
            return [left, right]
        elseif value < target
            left += 1
        else
            right -= 1
    return null

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值