动态规划-矩阵链乘法(2)

前言:今天接着学习动态规划算法,学习如何用动态规划来分析解决矩阵链乘问题。首先回顾一下矩阵乘法运算法,并给出C++语言实现过程。然后采用动态规划算法分析矩阵链乘问题并给出C语言实现过程。

1、矩阵乘法
 
      从定义可以看出: 只有当矩阵A的列数与矩阵B的行数相等时A×B才有意义。一个m×r的矩阵A左乘一个r×n的矩阵B,会得到一个m×n的矩阵C 。在计算机中,一个矩阵说穿了就是一个二维数组。一个m行r列的矩阵可以乘以一个r行n列的矩阵,得到的结果是一个m行n列的矩阵,其中的第i行第j列位置上的数等于前一个矩阵第i行上的r个数与后一个矩阵第j列上的r个数对应相乘后所有r个乘积的和。采用C++语言实现完整的两个矩阵乘法,程序如下所示:
#include <iostream>
using namespace std;
#define A_ROWS    3             /*矩阵A的行为3*/
#define A_COLUMNS 2             /*矩阵A的列为2*/
#define B_ROWS    2             /*矩阵B的行为2*/
#define B_COLUMNS  3             /*矩阵B的列为3*/
void matrix_multiply(int A[A_ROWS][A_COLUMNS],int B[B_ROWS][B_COLUMNS],int C[A_ROWS][B_COLUMNS]);
int main()
{   //初始化矩阵A、B、C的值
    int A[A_ROWS][A_COLUMNS]={1,0,
                              1,2,
                              1,1};
    int B[B_ROWS][B_COLUMNS]={1,1,2,
                              2,1,2};
    int C[A_ROWS][B_COLUMNS]={0};
    matrix_multiply(A,B,C);   /*C=A*B*/
    //输出C矩阵的元素
    for(int i=0;i<A_ROWS;i++)
    {
        for(int j=0;j<B_COLUMNS;j++)
            cout<<C[i][j]<<" ";
        cout<<endl;
    }
    return 0;
}
void matrix_multiply(int A[A_ROWS][A_COLUMNS],int B[B_ROWS][B_COLUMNS],int C[A_ROWS][B_COLUMNS])
{
    if(A_COLUMNS!=B_ROWS)                  /*不满足矩阵乘法的原则*/
        cout<<"error:incompatible dimensions."<<endl;
    else
    {
        int i,j,k;
        for(i=0;i<A_ROWS;i++)       //
            for(j=0;j<B_COLUMNS;j++)
            {
                C[i][j]=0;
                for(k=0;k<A_COLUMNS;k++)
                    C[i][j]+=A[i][k]*B[k][j];  /*将A的每一行的每一列与B的每一列的每一行的乘积求和*/
            }
    }
}
程序测试结果如下所示:

2、矩阵链乘问题描述

  给定n个矩阵构成的一个链<A1,A2,A3,.......An>,其中i=1,2,...n,矩阵A的维数为pi-1pi,对乘积 A1A2...A以一种最小化标量乘法次数的方式进行加全部括号。

  注意:在矩阵链乘问题中,实际上并没有把矩阵相乘,目的是确定一个具有最小代价的矩阵相乘顺序。找出这样一个结合顺序使得相乘的代价最低。

3、动态规划分析过程

1)最优加全部括号的结构

  动态规划第一步是寻找一个最优的子结构。假设现在要计算AiAi+1....Aj的值,计算Ai...j过程当中肯定会存在某个k值(i<=k<j)将Ai...j分成两部分,使得Ai...j的计算量最小。分成两个子问题Ai...k和Ak+1...j,需要继续递归寻找这两个子问题的最优解。

  有分析可以到最优子结构为:假设AiAi+1....Aj的一个最优加全括号把乘积在Ak和Ak+1之间分开,则Ai..k和Ak+1..j也都是最优加全括号的。

2)一个递归解

  设m[i,j]为计算机矩阵Ai...j所需的标量乘法运算次数的最小值,对此计算A1..n的最小代价就是m[1,n]。现在需要来递归定义m[i,j],分两种情况进行讨论如下:

当i==j时:m[i,j] = 0,(此时只包含一个矩阵)

当i<j 时:从步骤1中需要寻找一个k(i≤k<j)值,使得m[i,j] =min{m[i,k]+m[k+1,j]+pi-1pkpj} (i≤k<j)。

3)计算最优代价

  虽然给出了递归解的过程,但是在实现的时候不采用递归实现,而是借助辅助空间,使用自底向上的表格进行实现。设矩阵Ai的维数为pi-1pi,i=1,2.....n。输入序列为:p=<p0,p1,...pn>,length[p] = n+1。使用m[n][n]保存m[i,j]的代价,s[n][n]保存计算m[i,j]时取得最优代价处k的值,最后可以用s中的记录构造一个最优解。书中给出了计算过程的伪代码,摘录如下:

MAXTRIX_CHAIN_ORDER(p)
  n=length[p]-1;          /*矩阵的最大下标*/
  for i=1 to n  
      do m[i][i]=0;       /*对角线元素*/   
  for t=2 to n            /*t 是矩阵链的长度*/     
        do for i=1 to n-t+1
                      j=i+t-1               /*i和j的距离为t-1*/
                      m[i][j]=MAXLIMIT;     /*初始化为最大值*/
                      for k=i to j-1        /*划分的位置逐渐的后移*/
                        q=m[i][k]+m[k+1][i]+qi-1qkqj;
                        if q<m[i][j];       /*比较,寻找最小值*/
                           then m[i][j]=q;  /*保存当前矩阵链的乘法次数的最小值*/
                                s[i][j]=k;  /*保存当前矩阵链的最优切割位置*/
  return m and s;   /*返回最优次数和最优切割位置*/

MATRIX_CHAIN_ORDER具有循环嵌套,深度为3层,运行时间为O(n3)。如果采用递归进行实现,则需要指数级时间Ω(2n),因为中间有些重复计算。递归是完全按照第二步得到的递归公式进行计算,递归实现如下所示:

 
int recursive_matrix_chain(int *p,int i,int j,int m[N+1][N+1],int s[N+1][N+1]) //矩阵链i-j,m乘法次数最小值,s最优的切割位置
{
    if(i==j)
        m[i][j]=0;
    else
    {
        int k;
        m[i][j]=MAXVALUE;
        for(k=i;k<j;k++)
        {
            int temp=recursive_matrix_chain(p,i,k,m,s)+recursive_matrix_chain(p,k+1,j,m,s)+p[i-1]*p[k]*p[j];
            if(temp<m[i][j])
            {
                m[i][j]=temp;
                s[i][j]=k;
            }
        }
    }
    return m[i][j];
}



 对递归算计的改进,可以引入备忘录,采用自顶向下的策略,维护一个记录了子问题的表,控制结构像递归算法。完整程序如下所示:

4)构造一个最优解

第三步中已经计算出来最小代价,并保存了相关的记录信息。因此只需对s表格进行递归调用展开既可以得到一个最优解。书中给出了伪代码,摘录如下:

PRINT_OPTIMAL_PARENS(s,i,j)
  if i==j
     then print "Ai"
  else
     print "(";
     PRINT_OPTIMAL_PARENS(s,i,s[i][j]);
     PRINT_OPTIMAL_PARENS(s,s[i][j]+1,j);
     print ")";

4、编程实现

  采用C++语言实现这个过程,现有矩阵A1(30×35)、A2(35×15)A3(15×5)、A4(5×10)、A5(10×20)、A6(20×25),得到p=<30,35,15,5,10,20,25>。实现过程定义两个二维数组m和s,为了方便计算其第一行和第一列都忽略,行标和列标都是1开始。完整的程序如下所示:

#include <iostream>
using namespace std;
#define N 6
#define MAXVALUE 1000000
void matrix_chain_order(int *p,int len,int m[N+1][N+1],int s[N+1][N+1]);
void print_optimal_parents(int s[N+1][N+1],int i,int j);
int main()
{
    int p[N+1]={30,35,15,5,10,20,25};
    int m[N+1][N+1]={0};
    int s[N+1][N+1]={0};
    int i,j;
    matrix_chain_order(p,N+1,m,s);
    cout<<"m value is:"<<endl;
    for(i=1;i<=N;++i)
    {
        for(j=1;j<=N;++j)
            cout<<m[i][j]<<'\t';
        cout<<endl;
    }
    cout<<"s value is:"<<endl;
    for(i=1;i<=N;++i)
    {
        for(j=1;j<=N;++j)
            cout<<s[i][j]<<'\t';
        cout<<endl;
    }
    cout<<"The result is:"<<endl;
    print_optimal_parents(s,1,N);
    return 0;
}
void matrix_chain_order(int *p,int len,int m[N+1][N+1],int s[N+1][N+1])
{
    int i,j,k,t;
    for(i=0;i<=N;++i)
        m[i][i]=0;
    for(t=2;t<=N;t++)        //当前矩阵链的长度
    {
       for(i=1;i<=N-t+1;i++)    //从第一矩阵开始计算,计算长度为t的最小代价
       {
            j=i+t-1;             //长度为t时候的最后一个元素
            m[i][j]=MAXVALUE;     //初始化为最大代价
            for(k=i;k<=j-1;k++)
            {
                int temp=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];
                if(temp<m[i][j])
                {
                    m[i][j]=temp;
                    s[i][j]=k;
                }
            }
       }
    }
}
//s中存放着括号当前的位置
void print_optimal_parents(int s[N+1][N+1],int i,int j)
{
    if(i==j)
        cout<<"A"<<i;
    else
    {
        cout<<"(";
        print_optimal_parents(s,i,s[i][j]);
        print_optimal_parents(s,s[i][j]+1,j);
        cout<<")";
    }
}

程序测试结果如下所示:

5、总结

  动态规划解决问题关键是分析过程,难度在于如何发现其子问题的结构及子问题的递归解。这个需要多多思考,不是短时间内能明白。在实现过程中遇到问题就是数组,数组的下标问题是个比较麻烦的事情,如何能够过合理的去处理,需要一定的技巧。

冷静思考,勇敢面对,把握未来!


转载:http://www.cnblogs.com/Anker/archive/2013/03/10/2952475.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值