数据的存储

一.数据类型介绍

前面我们已经学习了C语言的基本内置类型:

char //字符数据类型
short //短整型
int //整形
long //长整型
long long //更长的整形
float //单精度浮点数
double //双精度浮点数

1.类型的基本归类

类型的总结:

(1)整形

char:
unsigned char
signed char

short:
unsigned short (int)
signed short (int)

int:
unsigned int
signed int

long:
unsigned long (int)
signed long (int)

(2)浮点型

float
double

(3)构造类型

数组类型:arr [] (例)
结构体类型:struct
枚举类型:enum
联合类型:union

(4)指针类型

char* p1;
int* p2;
float* p3;
void* p4;

(5)空类型

void表示空类型(无类型)
通常用于函数的返回类型、函数的参数、指针类型。
例如

int main(void)

二.整形在内存中的存储

变量的创建需要在内存中开辟一个空间,我们知道整形是4个字节,那么整形在内存中是如何存储的呢?

1.原码、反码、补码

将十进制的整形转换为二进制,例如

int a = 3;
//00000000000000000000000000000011   -原码
//00000000000000000000000000000011   -反码
//00000000000000000000000000000011   -补码

将十进制整形直接转换为二进制,称为原码。对于一个正数而言,正数的原码、反码、补码相同。

那么接下来我们举一个负数的例子

int b = -5;
//10000000000000000000000000000101   -原码
//11111111111111111111111111111010   -反码
//11111111111111111111111111111011   -补码

直接将 - 5 转换为二进制得到原码,我们发现正数 3 的原码最高位是 0 ,而 - 5 的原码最高位为 1 。这是因为最高位叫符号位,符号位为 0 说明是正数,为 1 说明是负数。

对于负数而言,将原码的符号位不变,其他位按位取反,得到反码。

反码 + 1 得到补码。

总结:正数的原码、反码、补码相同
负数的原码、反码、补码各不相同

2.大小端介绍

整形在内存中存储的是补码
引入上面的例子,我们来看一下整形在内存中的存储。

int a = 3;
//00000000000000000000000000000011   -原码
//00000000000000000000000000000011   -反码
//00000000000000000000000000000011   -补码
//将补码进行如下变换
//00000000 00000000 00000000 00000000    (补码)---4字节  (二进制简单分为四组,每组1个字节)
//0000 0000 0000 0000 0000 0000 0000 0011     --- 4字节 
//  0    0    0    0    0    0    0    3         --- 4字节
// 00  00  00  03                                --- 4字节(十六进制简单分为四组,每组1个字节)

这是二进制,内存中地址编号是使用的十六进制,这时我们需要转换为十六进制。
我们来看一下内存

在这里插入图片描述
这跟我们刚才分析的有点出入,这是为什么呢?

这是因为有大小端存储模式之分。

那么为什么会有大小端模式之分呢? 在计算机系统中,我们是以字节为单位的,每个地址单元
都对应着一个字节,一个字节为8 bit。但是在C语言中除了8 bit的char之外,还有16 bit的short
型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32
位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因
此就导致了大端存储模式和小端存储模式。

例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为
高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高
地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则
为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式
还是小端模式。

大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中。
在这里插入图片描述
在这里插入图片描述
由此可见,是小端存储模式。

我们再来看一下负数的存储方式相不相同

int b = -5;
//10000000000000000000000000000101   -原码
//11111111111111111111111111111010   -反码
//11111111111111111111111111111011   -补码
//1111 1111 1111 1111 1111 1111 1111 1011   -补码
//  f    f    f    f    f    f    f    b
// ff  ff  ff  fb

我们在内存中看一下,显然,负数也是一样的。
在这里插入图片描述
关于大小端存储模式,我们可以来看一道百度的2015年面试题

请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。(10分)
//代码1
#include <stdio.h>
int check_sys()
{
 int i = 1;
 return (*(char *)&i);
}
int main()
{
 int ret = check_sys();
 if(ret == 1)
 {
 printf("小端\n");
 }
 else
 {
 printf("大端\n");
 }
 return 0;
}

//代码2
int check_sys()
{
 union
 {
 int i;
 char c;
 }un;
 un.i = 1;
 return un.c;
}

在这里插入图片描述

3.小练习

练习①

#include <stdio.h>
int main()
{
    char a = -1;
    signed char b =-1;
    unsigned char c =-1;
    printf("a=%d,b=%d,c=%d",a,b,c);
    
    return 0;
}

这段代码输出什么?
在这里插入图片描述

分析:

char 类型的变量大小为 1 字节

// 10000001 -> ( -1 的原码)
// 111111110 -> ( -1 的反码)
// 111111111 -> ( -1 的补码)

由于变量 a 是 char 类型,取值范围是:-128 ~ 127;变量 b 是 signed char 类型,取值范围是: -128 ~ 127。取值范围相同,使用 %d 打印还是打印 -1 ,因为 -1 在取值范围之内,内存中存储整形负数是存储补码,经过一系列变换得到原码打印 -1 。

而 unsigned char 类型 的变量 c 的取值范围是: 0 ~ 255 , 定义变量 c 值的原码、反码、补码如下

// 10000001 -> (原码)
// 111111110 -> (反码)
// 111111111 -> (补码)

unsigned char 是无符号的 char 类型,因为系统中存储整形的补码,所以编译器不认为补码的第一位是符号位,又因为正数的原码、反码、补码相同,所以编译器认为该数是正数,接下来转换为十进制就输出 c = 255

练习②

#include <stdio.h>
int main()
{
    char a = -128;
    printf("%u\n",a);
    
    return 0;
}

该代码输出什么?
在这里插入图片描述
分析:

char 类型的变量大小为 1 字节

-128 的原码、反码、补码如下

// 10000000 -> (原码)
// 111111111 -> (补码)
// 100000000 -> (补码)

由于打印时是使用的 %u ,意思为打印无符号整形,整形变量的大小为 4 字节,所以会进行整形提升,需要向前补符号位,补全如下

// 11111111111111111111111110000000 -> (原码)
// 111111111111111111111111111111111 -> (补码)
// 11111111111111111111111100000000 -> (补码)

打印无符号整形,正数的原码、反码、补码相同,所以编译器认为此补码就为原码,打印出来为4294967168 ,我们用计算器看一下结果
在这里插入图片描述

练习③

#include <stdio.h>
int main()
{
    char a = 128;
    printf("%u\n",a);
    
    return 0;
}

该代码输出什么?
在这里插入图片描述
分析:
此题与上一题非常相似, 正数 128 的原码、反码、补码相同,所以编译器直接进行打印无符号整形,得到结果。

练习④

int i= -20;
unsigned  int  j = 10;
printf("%d\n", i+j); 
//按照补码的形式进行运算,最后格式化成为有符号整数

在这里插入图片描述

分析:

变量 i 的原码、反码、补码如下

// 10000000000000000000000000010100 (原码)
// 111111111111111111111111111111101011 (反码)
// 111111111111111111111111111111101100 (补码)

变量 j 的原码、反码、补码如下

// 00000000000000000000000000001010 (原码)
// 00000000000000000000000000001010 (反码)
// 00000000000000000000000000001010 (补码)

将两个数值的补码放到一起相加

// 111111111111111111111111111111101100 ( i 的补码)
// 00000000000000000000000000001010 ( j 的补码)
// 111111111111111111111111111111110110 ( i + j 的补码)

算得 i + j 的原码为

// 10000000000000000000000000001010

所以结果为 - 10

练习⑤

#include <stdio.h>
int main()
{
    unsigned int i;
	for(i = 9; i >= 0; i--)
	{
    	printf("%u\n",i);
	}
	
	return 0;
}

该代码输出什么? 该程序陷入死循环
在这里插入图片描述
分析:

由于创建的变量 i 是无符号整形,随着 i 逐渐减小到负数,编译器会将负数的补码看为是正数的原码,直接进行正数的打印所以在下面的循环中,i 无论怎样减小,一直存在 i >= 0,结果就是死循环

练习⑥

int main()
{
    char a[1000];
    int i;
    for(i=0; i<1000; i++)
   {
        a[i] = -1-i;
   }
    printf("%d",strlen(a));
    return 0;
}

该代码输出什么?
在这里插入图片描述

分析:

在循环中逐渐将值填入 char 类型的数组 a 中,a[0] = -1 ; a[1] = -2 … … a[127] = - 128 ; a[128] = 127 ; … … a[254] = 2; a[255] = 1;a[256] = 0;

由于 ‘\0’ 的 ASCII 码值为 0,a[256] = 0,所以 strlen(a) 就取得255

练习⑦

#include <stdio.h>

unsigned char i = 0;

int main()
{
    for(i = 0;i<=255;i++)
   {
        printf("hello world\n");
   }
   
    return 0;
}

该代码输出什么? 该程序陷入死循环
在这里插入图片描述

分析:

创建的变量 i 是 unsigned char 类型,大小为 1 字节,取值范围是 0 ~ 255,随着 i 的增加,循环条件始终成立

// 11111111 (255的二进制表示)
// 100000000 (255 + 1 的二进制表示)

由于变量 i 的大小为 1 字节,是 8 个 bit ,此值超出范围,所以左端会丢失一位
在这里插入图片描述
因此 255 + 1 的结果为 0 ,依次往复,循环条件始终成立,所以陷入死循环

三.浮点数在内存中的存储

常见的浮点数:

3.14159
1E10
浮点数家族包括: float、double、long double 类型。
浮点数表示的范围:float.h中定义

注:1E10 的意思为(1 * 10 ^ 10)

1.浮点数存储规则

根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:

(-1)^S * M * 2^E
(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。
M表示有效数字,大于等于1,小于2。
2^E表示指数位。

举一个例子

(1)十进制的 5.0 写成二进制为 101.0 ,相当于 1.01 * 2 ^ 2 ,S = 0, M = 1.01 , E = 2
(2)十进制的 - 5.0 写成二进制为 - 101.0 ,相当于 - 1.01 * 2 ^ 2 , S = 1, M = 1.01 , E = 2

IEEE 754规定:

对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

在这里插入图片描述

对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。

在这里插入图片描述

注:一般对浮点数进行存储的时候,M 部分会省略小数点前面的 1 ,这样保存的精度会更高。例如: 1.01 * 2 ^ 2 ,有效值 1.01 保存到 M 中时 从小数点后开始保存。

IEEE 754对有效数字M和指数E,还有一些特别规定。

前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。

IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂。
首先,E为一个无符号整数(unsigned int)这意味着,如果E为8位,它的取值范围为 0 ~ 255;如果E为11位,它的取值范围为 0 ~ 2047 。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是 127 ;对于 11 位的 E,这个中间数是 1023。比如,2^10 的 E 是 10 ,所以保存成 32 位浮点数时,必须保存成 10+127=137,即 10001001。然后,指数E从内存中取出还可以再分成三种情况:

E不全为0或不全为1

这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将
有效数字M前加上第一位的1。

比如:

0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为:

0 01111110 00000000000000000000000

E全为0

这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,
有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于
0的很小的数字。

E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s)。

2.例题

为了能更好的理解浮点数在内存中的存储,下面我们来看一个例题

int main()
{
 int n = 9;
 float *pFloat = (float *)&n;
 printf("n的值为:%d\n",n);
 printf("*pFloat的值为:%f\n",*pFloat);
 *pFloat = 9.0;
 printf("num的值为:%d\n",n);
 printf("*pFloat的值为:%f\n",*pFloat);
 
 return 0;
}

该代码输出什么?
在这里插入图片描述

分析:

(1):定义一个 变量 n 并赋值 9 ,① 处是直接以十进制整形打印 n 的值,所以得到 n 的值为:9

(2):取地址 n 并强制转换为 float* 类型,再解引用进行打印,正数的原码、反码、补码相同 ,先写出 9 的二进制

// 00000000000000000000000000001001 ( 9 的二进制)

由于 & n 放入 pFloat 变量中,pFloat 变量解引用,找到存放的 9 的二进制 ,编译器认为得到的这个 9 的二进制是浮点数,所以是这样解析的(使用上面 E 全为 0 的规则)

// 0 00000000 00000000000000000001001
// S ------E-----------------------M-------------------
// S = 0
// E = 1 - 127
// M = 0.00000000000000000001001
// ( - 1)* 0 * 0.00000000000000000001001 * 2 ^ ( - 126 )

由此可知,得到的数非常非常小,由于精度有限,保留小数点后 6 位,所以得到的结果是 0.000000

(3):先写出 9.0 的二进制表示形式

// 9.0
// 1001.0
// 1.001 * 2 ^ 3
// ( - 1 ) * 0 * 1.001 * 2 ^ 3
// S = 0
// E = 3 + 127
// M = 1.001
// 0 10000010 00100000000000000000000 ( 9.0 的二进制)

放进去的是浮点数,用 %d 进行打印,那么编译器会认为这就是个整形,所以打印出来的结果是:1091567616

我们用计算器来验证一下
在这里插入图片描述

(4):因为本身变量中放的就是浮点数,用 %f 进行打印,所以就打印 9.000000( float 精确到小数点后 6 位)

注:本次学习就暂时结束啦,文章中有错误、不足之处欢迎大佬指正,让我们共同学习,共同进步,欲戴王冠,必承其重,加油!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值