【金融计量学】面板数据(自用笔记,第一次写)

本文介绍了面板数据的分类,包括平衡/非平衡及动态/静态,并重点探讨了静态面板数据模型。静态面板数据模型分为固定效应模型和随机效应模型,用于处理个体效应。固定效应模型通过虚拟变量法或stata命令xtreg实现,适用于处理个体不随时间变化的影响因素。
摘要由CSDN通过智能技术生成

一、简介

        面板数据的分类:平衡/非平衡面板数据;动态/静态面板数据。

        面板数据中包含两种效应:

        1. 个体效应:不随时间推移而明显变化的因素,如消费者的收入、产品的价格、个人消费习惯、社会制度等。

        2. 时间效应:在单个截面中难以分析,随时间推移才体现出差异的因素。

二、静态面板数据模型

        “静态”意味着解释变量不包含前期的被解释变量值。v.s.动态~包含。

y_i_t=\alpha _i+x_i_t\beta +\varepsilon _i_t

\alpha _i就是个体效应。

        两种模型,代表两种处理个体效应的方式:

        1. 固定效应模型:个体效应不随时间改变,每个个体都有一个特定的截距项。

        2. 随机效应模型(误差成分模型):所有个体具有相同截距项,个体差异主要反映在随机干扰项的设定上。

2.1.1固定效应模型-虚拟变量法(适用于截面中的样本量不多的情况)

import excel using B7introFe.xlsx, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值