ZJOI2010 网络容量

本文详细解析了洛谷P2604题目的解题思路,主要涉及网络流问题。第一问通过直接计算最大流解决,而第二问则利用最大流最小费用算法,在原图基础上调整边的费用并求解。代码实现中使用了Bellman-Ford算法的SPFA(Shortest Path Faster Algorithm)来寻找增广路径,并更新最小费用。此题解有助于深化对网络流和最优化算法的理解。
摘要由CSDN通过智能技术生成

题目链接:https://www.luogu.com.cn/problem/solution/P2604

这一眼就是网络流题目
第一问十分简单,直接最大流即可
那么怎么做第二问呢?

我们观察到,先算出了第一问的 m a x f l o w maxflow maxflow,然后第二问等价于在原图中(原图中每条边费用为0),每条边加上一条流量为 ∞ \infty ,费用为原边的费用的图

然后根据最大流最小费用算法,我们可以知道其实是不用重新建整个图,只需要在当前残量网络中加上原图没有的边即可

这是因为最大流最小费用算法每次会找出费用最小的一条增广路,我们求最大流时每条增广路费用均为0,一定符合条件

C o d e Code Code

#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int MAXN = 1000, MAXM = 1e4, inf = 1 << 30;
struct w{int to, nx, f, c;}head[MAXM + MAXM + 10];
struct edge{int x, y, f, c;}e[MAXM + 10];
int a[MAXN + 10], vis[MAXN + 10], dis[MAXN + 10], minf[MAXN + 10], lx[MAXN + 10], tot = 1;
inline int read();
inline void add(int x, int y, int i, int f, int c){head[i].to = y, head[i].nx = a[x], head[i].f = f, head[i].c = c; a[x] = i;}
inline void add_edge(int x, int y, int f, int c){
	add(x, y, ++tot, f, c);
	add(y, x, ++tot, 0, -c);
}

bool spfa(int s, int t, int n){
	queue <int> q;
	for (register int i = 1; i <= n; ++i)	dis[i] = inf, vis[i] = 0;
	dis[s] = 0; minf[s] = inf;	q.push(s);
	while (!q.empty()){
		int x = q.front();	q.pop();	vis[x] = 0;
		for (register int i = a[x]; i; i = head[i].nx){
			int v = head[i].to;
			if (head[i].f && dis[v] > dis[x] + head[i].c){
				dis[v] = dis[x] + head[i].c;
				minf[v] = min(minf[x], head[i].f);
				lx[v] = i;
				if (!vis[v]){
					vis[v] = 1;
					q.push(v);
				}
			}
		}
	}
	return dis[t] < inf;
}

int MCMF(int s, int t, int n, int op){
	int maxflow = 0, mincost = 0;
	while (spfa(s, t, n)){
		maxflow += minf[t];
		mincost += dis[t] * minf[t];
		int tmp = t;
		while (tmp != s){
			head[lx[tmp]].f -= minf[t];
			head[lx[tmp] ^ 1].f += minf[t];
			tmp = head[lx[tmp] ^ 1].to;
		}
	}
	if (op)	return maxflow;
	else   return mincost;
}

int main(){
	//freopen ("std.in", "r", stdin);
	//freopen ("std.out", "w", stdout);
	int n, m, k;
	n = read(), m = read(), k = read();
	for (register int i = 1; i <= m; ++i){
		e[i].x = read(), e[i].y =read(), e[i].f = read(), e[i].c = read();
		add_edge(e[i].x, e[i].y, e[i].f, 0);		
	}
	int maxflow = MCMF(1, n, n, 1);
	printf("%d ", maxflow);
	add_edge(n + 1, 1, k, 0);
	for (register int i = 1; i <= m; ++i)	add_edge(e[i].x, e[i].y, inf, e[i].c);
	int mincost = MCMF(n + 1, n, n + 1, 0);
	printf("%d\n", mincost);
	return 0;
}

inline int read(){
	int x = 0;
	char c = getchar();
	while (!isdigit(c))c = getchar();
	while (isdigit(c))x = (x << 1) + (x << 3) + (c & 15), c = getchar();
	return x;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值