线性代数-方世昌第三版(下)学习笔记

文章介绍了代数的基本概念,包括代数结构的构成(集合、运算、常数),详细阐述了么元、零元的定义及唯一性,以及逆元的概念。此外,还讨论了子代数的定义和封闭性,以及同态和同构在代数系统中的作用。
摘要由CSDN通过智能技术生成

根据老师上课的节奏进行总结,也算是对自己学习的复习啦!如果有错误或者疑问的地方,欢迎大家指出哇!

持续更新中……

目录

第六章 代数

6.1 代数结构

6.1.1代数的构成和分类方法

6.1.2 么元和零元

6.1.3 逆元

 6.2  子代数



第六章 代数

  • 代数,也叫代数结构,或者代数系统——指定义有若干运算的集合。
  • 不关注组成代数系统的具体集合是什么,也不关注集合上的运算如何定义,而只是假设这些运算遵循某组规则,例如结合律、交换律、分配律等,根据这样的抽象代数系统,来讨论和研究该系统应有的性质,使所得结论具有普遍性。
  • (人话):一个框架(某组规则),其他东西都可以往里面套,然后只研究这个框架具有什么性质。

6.1 代数结构

6.1.1代数的构成和分类方法

  1. 代数(三部分组成):

       (1)载体一个集合。载体是我们将处理的数学目标的集合, 诸如整数、实数或符号串集合等。 一般是非空集合。

       (2)定义在载体上的运算定义在载体S上的运算是从$$S^m到S的一个映射,自然数m的值叫做运算的元数。一定要封闭

  • 定义:设A为集合,

               函数 f : A\timesA\rightarrowA 称为A上的二元运算

               函数 : $$A^n\rightarrow A称为A上的 n元运算

               n=0,  0元运算, \rightarrowA

               n=1, 一元运算,A\rightarrowA

  • A 在运算 f 下是封闭的:

               任何A中元素都可参与 f 运算

               运算结果属于A

常见集合运算元数

集合

二元运算一元运算0元运算

I, Q, R

+,\times-0,1
$$M_n(R)+,\times-\theta ,E
\rho (B)\cup ,\cap ,-,\oplus~\O,B
R(B)\circ$$I_B
$$A^A\circ
  • 算符记号\circ ,*,\bullet ,\square ,\lozenge ,\triangle等。
  • 表达式

           ∘ (x1, x2, …, xn) = y

           x1 x2 = y

           △x = y

  • 表示方法

            (1)解析表达式:

                               ∘是实数集 R上的二元运算

                                       xy = x+y-2xy  

            (2)一元、二元运算表(适用于有穷集):

  • 运算律

     (1)设 ∘ , * A上的二元运算

              交换律   $$ {\forall}a,b\in A ,        ab=ba

              结合律   $$\forall a,b,c\in A,     (ab)∘c=a∘(bc)

              幂等律   $$\forall a \in A  ,           aa=a     

              分配律    $$\forall a,b,c \in A

                             a∘(b*c)=(ab)*(ac),   (b*c)∘a=(ba)*(ca)  

              吸收律   设∘,*可交换   $$ {\forall}a,b\in A,

                             a∘(a*b)=aa*(ab)=a

  • 集合

    运算

    交换律

    结合律

    幂等律

    I, Q, R

    普通加法+

     

    普通乘法\times

    Mn(R)

    矩阵加法+

    矩阵乘法\times

    ρ(B)

    并 \cup

    交 \cup 

    相对补-

    对称差\oplus 

    AA

    函数复合

  • 集合  

    运算

    分配律

    吸收律

    I, Q, R

    普通加法+与乘法\times

    \times对+可分配

    +对\times不分配

    Mn(R)

    矩阵加法+与乘法\times

    \times对+可分配

    +对\times不分配

    ρ(B)

    \cup与交\cap 

    \cup\cap可分配 

    \cap\cup可分配

    \cap与对称差\oplus

    \cap\oplus可分配

               \oplus\cap不分配

       (3)代数常数:载体的特异元素。(可有可无)     

                有些代数不含常数。这里所谓不含只是说我们研究该代数时并不关注这些特异元素, 不一定是真的没有。

             

                                                                   <载体,运算,常数>  可有多个

                例如:

                            幂集合ρ(S)、并、交、补、\o 和S可构成一个代数。

                            载体是S的幂集合ρ(S)

                            定义在载体上的运算是: 二个二元运算∪和∩、 一个一元运算—(减号不封闭)。

                            ③常数是\oS

                            这个代数可记为ρ(S), ∪, ∩, —  , \o , S

                代数通常用载体、运算和常数组成的n重组表示。

  • 通常我们不去研究单个具体的代数, 而是一个种类一个种类地去研究。为此, 我们首先要知道什么样的两个代数是同一种类的。

     (1)要有相同的构成成分。 如果两个代数包含同样个数的运算和常数, 且对应运算的元数相同, 则称两个代数有相同的构成成分。

              例:

                   (1) 代数\bullet ,1〉I, — , 0〉有同样的构成成分, 因为都有一个二元运算和一个常数。

                   (2) 代数0, 1, ∨, ∧, 0, 1〉ρ(S), ∪, ∩, \o, S有相同的构成成分。

                        两个代数有相同的构成成分, 还不一定有本质的联系。

     (2)要有一组相同的称为公理的规则。这里每一公理是用载体元素和代数运算的符号写成的方程。

  • 具有相同构成成分和服从相同公理集合的代数称为同种类的。 对同一种类的代, 根据它的公理推出的一切定理, 对该种类的一切代数都成立。

6.1.2 么元和零元

(1)定义:*S上的二元运算,$$1_lS的元素 如果对S中的每一元素,  

$$ 1_l *x=x

                    则称$$1_l对运算*左么元S中的元素$$0_l, 如果对S中的每一元素x,  

$$0_l *x=0_l

                    则称$$0_l对运算是左零元

                    类似地可定义出右么元 $$1_r 和右零元 $$0_r 。

(2)定义:*S上的二元运算, 1S的元素, 如果对S中的每一元素x,

1*x=x*1=x

                    则称1对运算*么元S中的元素0, 如果对S中的每一元素x,

0*x=x*0=0

                    则称0对运算*零元

                    左=右 就是完整的元。

                    么元:相当于 1×其他=其他

                    零元:相当于 0×其他=0

 (3)定理6.1-1:设*是S上的一个二元运算,具有左么元1,和右么元1,,那么1,=1,,这元素就是么元。
       
  证:因为\large $$1_r\large $$1_l是右么元和左么元。\large $$1_r=1_l \cdot 1_r=1_l 证毕。
 

          定理6.1-2:设*是S上的二元运算,具有左零元0,和右零元0,,那么0,=0,,这元素就是零元。
       
  证:因为\large $$1_r\large $$1_l是右零元和左零元。\large $$1_r=1_l \cdot 1_r=1_l 证毕。

         推论6.1-2:一个二元运算的么元(零元)是唯一的。 

6.1.3 逆元

定义6.1-3:设 * 是S上的二元运算,1是对运算 * 的么元。如果x * y=1,那么关于运算 * ,x是y的左逆元,y是x的右逆元如果x * y=1和y * x=1两者都成立,那么关于运算 * ,x是y的逆元(y也是x的逆元)。x 的逆元通常记为\large $$x^{-1} 。

存在逆元(左逆元、右逆元)的元素称为可逆的(左可逆的、右可逆的)。

定义6.1-4:设*是S上的二元运算,a∈S,如果对于每一x,y∈S,有
                                       (a*x=a*y)V(x*a=y*a)→(x=y)
                   则称a是
可约的可消去的。

定理6.1-4:设 \circ 是S上的可结合运算,如果元素a∈S是可逆的,则 a 也是可约的。

但是可约未必可逆。

 6.2  子代数

定义6.2-1:设 \circ 和 \triangle 是集合S上的二元和一元运算,S'是S的子集。如果 a,b\in S';
蕴含着a\circ b\in S',那么S' 对 \circ 是封闭的。如果a\in S'蕴含着\triangle a\in S',那么S'对\triangle是封
闭的。

定义6.2-2:设 A=〈S,\circ ,\triangle ,k〉是一代数,如果
                   (1) S'\subseteq S
                   (2) S'对S上的运算\circ\triangle封闭
                   (3) k \in S'
                   那么 A'=〈S',\circ ,\triangle,k〉是A的子代数。

注:(1)如果A'是A的子代数,那么A'和A有相同的构成成分服从相同的公理

       (2)A的最大可能的子代数是它自己,这个子代数是常存在的

       (3)如果A的常数集合在A的运算下是封闭的,那么它组成A的最小子代数。这两种子代数称为A的平凡子代数,其余子代数称为真子代数

6.3 同态

1、两个代数在结构上是一致的的要求——同构

      (1)两个代数必须有相同的构成成分;
      (2)两个代数的载体必须有相同的基数;
      (3)两个代数的运算和常数必须遵循相同的规则。

定义6.3-1  代数A=〈S,*,\triangle ,k〉和A'=〈S',*',\triangle ',k'〉是同构的,如果存在一双射函数 h,使
                 (1) h:S→S'
                 (2) h(a*b) =h(a) *' h(b)
                 (3) h(\trianglea) = \triangle ' h(a)
                 (4) h(k) = k'

 这里a、b是S的任意元素。映射h叫做从A到A'的同构,A'叫做A在映射h下的同构象。

  • 上述定义被推广到具有任意构成成分的代数后就是:如果双射函数h是从代数A到A'的同构,那么

       (1)A和A'必须有相同的构成成分;
       (2)在函数h的作用下,A的每一运算保持;
       (3)函数映射A的每一常数到A'的对应常数(若A不含常数时,不须考虑这一条)。


       如果A和A'是同构的代数,它们基本上是不同名的相同结构;简单地调换符号就能从 A 得到代数A'。


2、同态

定义6.3-2:设A=〈S,*,△,k>和A'=〈S’,*',△',k'>是具有相同构成成分的*', 代数,h是一个函数。如果
                  (1) h:S→S
                  (2) h(a*b) = h(a) *' h(b)
                  (3) h(\trianglea) = \triangle ' h(a)
                  (4) h ( k ) = k
                  这里 a、b 是S的任意元素,则称 h 是从A到A'的同态,〈h(S) , *'\triangle ',k'>称为A在映射下的同态象。

 

 设h是从A到A'的同态,如果h是单射的,那么称h是单一同态;如果h是满射的,那么称h是满同态;只有h 是满同态时,才称A和A'同态;如果h是双射的,即是定义6.3一1的同构。如果A=A',那么称h是自同态;如果A=A'且h是同构,那么称h是自同构

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值