- 博客(19)
- 收藏
- 关注
原创 matplotlib
import numpy as npimport matplotlib.pyplot as plt#coding=utf-8#tu pian 1# x = np.linspace(0,10,1000)# y = np.sin(x)# z = np.cos(x**2)# plt.figure(figsize=(8,4))# plt.plot(x,y
2017-11-07 10:17:37 508
原创 solver 文件
test_iter: 1000#测试时,需要迭代的次数,即test_iter* batchsize(测试集的)测试集的大小batch_size=64test_interval: 500#每迭代多少次进行测试base_lr: 0.1#开始的学习率display: 50#每迭代多少次,显示在log文件里max_iter: 10000#train最大的迭代次数
2017-08-30 14:57:44 455
原创 用Python做深度学习(五)
对于神经网络,层的类型比较的多,合理的设计这些层的类型,对于任务准确度的提升都有很大的价值。Vision layer, Common Layer: InnerProduct, Convolution, Pooling, DropOutActivation/Neron Layer: ReLU, Sigmoid, TanH, AbsVal, Power, BNLL, Sca
2017-07-19 19:33:49 575
原创 python做深度学习(四)
Python接口操作caffe 可以直接在一个文件夹下面写python可以直接写层,这个后面再写python也可以直接写solver文件,将所有的caffe 用到的文件写在一个python文件中from caffe.proto import caffe_pb2s = caffe_pb2.SolverParameter()这样,就将solver封装到变量s中,可以操作s得到
2017-07-18 19:37:27 469
原创 Python做深度学习(三)
有关net的python接口solver = caffe.SGDSolver(“”) 读取配置文件,生成solver这个对象Solver = caffe.get_solver(“”)solver.net 从solver这个对象里,我们可以拿到训练用的netSolver.test_nets[0] 测试用的net可以是多个,一般获取第一个solv
2017-07-18 15:29:41 1204
原创 用Python做深度学习(二)
对于命令caffe后面可以跟四个模式: train test device_query time获取训练时间:caffe time -model ***.prototxt -terations 10-gpu 0/-cpu训练模型:caffe train -solver **.solver (屏幕上会有训练的信息)caffe train -solver ***.solver 2>&1
2017-07-18 10:38:23 993
原创 用Python做深度学习(一)
对于深度学习来讲的三要素: 数据 模型 算法深度学习对应着的过程: 准备数据 --定义Net-- 配置solver--run-- 分析结果caffe的运行是在安装的caffe的目录下进行的,这里需要关注的是路径问题,在运行不了或者运行错误时,要注意运行的路径(一)准备数据-- 以caffe自带的mnist为例进行caffe-master/data/mnist/get_mnist.s
2017-07-18 08:28:32 3006
原创 Numpy--存取数组
import numpy as np#存取元素#数组元素同列表一样,存在切片的性质#一维数组#可以使用太通列表一样的方式对数组元素进行存取a = np.arange(10)#使用arange创建数组,数组的下标是从0开始的print aprint a[5]#输出的是下标为5,但是是第6个元素print a[3:5]#切片取元素,获取下标3,4的元素pri
2017-07-01 16:13:14 751
原创 Numpy-创建数组
2017/7/1******************************************************#coding=utf-8import numpy as np#创建数组a = np.array([1,2,3,4])b = np.array([5,6,7,8])c = np.array([[1,2,3,4],[4,5,6,7],[7,8,9
2017-07-01 10:27:58 1626
原创 cs231n-python numpy tutorial
**********华丽丽的分割线**********有关斯坦福的cs231n课程,关于深度学习的课程代码全部是由python编写的,要求熟练的掌握python编程,并且对于不熟悉代码的同学给出了一个关于Numpy的简要的知识指导,对于我这样的小白当然要从头学起了。*************************************PythonPython是一门用于机器学习的
2017-06-12 09:18:45 1647
原创 斯坦福cs231n(一)
**********手动分割线**********今天开始,真是的学习斯坦福的cs231n的课程,会将一些学习的感触在博客上记录下来。**************************在斯坦福大学的课程主页上,有关于课程的详细信息(http://cs231n.stanford.edu/)课程需要一些Prerequisites,在上面也列举出了(1)对Python和C/C++要
2017-06-11 15:51:21 740
原创 caffe SilenceLayer
×××××××××××××××××××××2017/5/13************************在SSD代码中,添加新的层,出现了问题,查找说是需要加Silence层,找了一些资料,整理一下,方便以后学习The use of this layer is simply to avoid that the output of unused blobs is reported in
2017-05-13 09:57:33 5151
原创 caffe 训练和测试
训练cd 到指定的caffe 程序的源目录./built/tools/caffe train -solver -snapshot会生成caffemodel/solverstate等文件测试./build/tools/caffe.bin test 表示只做预测(前向传播计算),不进行参数更新(后向传播计算)-model=examples/mnist/lenet
2017-05-12 14:54:31 661
原创 caffe SSD 添加新层时出现的问题
caffe代码,在迭代10000次的时候需要进行test,但是test的时候遇见问题。I0512 14:40:29.685868 15163 upgrade_proto.cpp:77] Attempting to upgrade batch norm layers using deprecated params: snapshot_iter_10000.caffemodelI0512 14
2017-05-12 14:50:06 6262 14
原创 在multi-loss-box出现的问题
I0429 15:15:16.544440 32594 net.cpp:408] mbox_loss -> mbox_lossI0429 15:15:16.544540 32594 layer_factory.hpp:77] Creating layer mbox_loss_smooth_L1_locI0429 15:15:16.544674 32594 layer_factory.hpp
2017-04-29 16:18:45 1433 4
转载 caffe搭建自己的网络遇见的问题
*** Aborted at 1493298796 (unix time) try "date -d @1493298796" if you are using GNU date ***PC: @ 0x7f9f6f2eb8d6 caffe::PriorBoxLayer*** SIGSEGV (@0x0) received by PID 4758 (TID 0x7f9f6fd1680
2017-04-27 21:31:56 2492 1
原创 在caffe平台上搭建自己的网络
在per-training网络时遇见的问题。(1)equal(top_shape.begin() + 1, top_shape.begin()+ 4, shape.begin() + 1)channel的问题,查看了资料说是,在数据库的处理时,数据的通道由原来的3通道变成了1通道或者其他。需要对数据进行处理。在data/VOCdevkit/VOC2007/Annotations的文件中,可
2017-04-27 21:20:09 712
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人