.Hadoop序列化

Hadoop序列化

  1. 序列化概述
    什么是序列化?

序列化就是把内存中的对象,转换成字节序列(或其他数据传输协议)以便于存储到磁盘(持久化)和网络传输。

什么是反序列化?

反序列化就是将收到字节序列(或其他数据传输协议)或者是磁盘的持久化数据,转换成内存中的对象。

为什么要序列化?

一般来说,“活的”对象只生存在内存里,关机断电就没有了。而且“活的”对象只能由本地的进程使用,不能被发送到网络上的另外一台计算机。 然而序列化可以存储“活的”对象,可以将“活的”对象发送到远程计算机。

为什么不用Java的序列化?

因为Java的序列化是一个重量级序列化框架(Serializable),一个对象被序列化后,会附带很多额外的信息(各种校验信息,Header,继承体系等),不便于在网络中高效传输。所以,Hadoop自己开发了一套序列化机制(Writable)。

  1. Hadoop序列化特点
    紧凑 :高效使用存储空间。

快速:读写数据的额外开销小。

可扩展:随着通信协议的升级而可升级

互操作:支持多语言的交互

  1. 自定义bean对象实现序列化接口(Writable)
    在企业开发中往往常用的基本序列化类型不能满足所有需求,比如在Hadoop框架内部传递一个bean对象,那么该对象就需要实现序列化接口。

具体实现bean对象序列化步骤如下7步:

必须实现Writable接口;
反序列化时,需要反射调用空参构造函数,所以必须有空参构造;
重写序列化方法write;
重写反序列化方法readFields;
注意反序列化的顺序和序列化的顺序完全一致;
要想把结果显示在文件中,需要重写toString(),可用”\t”分开,方便后续用。
如果需要将自定义的bean放在key中传输,则还需要实现Comparable接口,因为MapReduce中的Shuffle过程要求对key必须能排序,详见后面排序案例。
具体详情见下面的案列:

  1. 序列化案例实操
    需求:统计每一个手机号耗费的总上行流量、下行流量、总流量

输入数据:

1 13736230513 192.196.100.1 www.atguigu.com 2481 24681 200
2 13846544121 192.196.100.2 264 0 200
3 13956435636 192.196.100.3 132 1512 200
4 13966251146 192.168.100.1 240 0 404
5 18271575951 192.168.100.2 www.atguigu.com 1527 2106 200
6 84188413 192.168.100.3 www.atguigu.com 4116 1432 200
7 13590439668 192.168.100.4 1116 954 200
8 15910133277 192.168.100.5 www.hao123.com 3156 2936 200
9 13729199489 192.168.100.6 240 0 200
10 13630577991 192.168.100.7 www.shouhu.com 6960 690 200
11 15043685818 192.168.100.8 www.baidu.com 3659 3538 200
12 15959002129 192.168.100.9 www.atguigu.com 1938 180 500
13 13560439638 192.168.100.10 918 4938 200
14 13470253144 192.168.100.11 180 180 200
15 13682846555 192.168.100.12 www.qq.com 1938 2910 200
16 13992314666 192.168.100.13 www.gaga.com 3008 3720 200
17 13509468723 192.168.100.14 www.qinghua.com 7335 110349 404
18 18390173782 192.168.100.15 www.sogou.com 9531 2412 200
19 13975057813 192.168.100.16 www.baidu.com 11058 48243 200
20 13768778790 192.168.100.17 120 120 200
21 13568436656 192.168.100.18 www.alibaba.com 2481 24681 200
22 13568436656 192.168.100.19 1116 954 200

编写MapReduce程序
编写流量统计的Bean对象
/**

  • @Date 2020/7/8 19:26

  • @Version 10.21

  • @Author DuanChaojie

    1. 实现writable接口
      */
      public class FlowBean implements Writable {

    private long upFlow;
    private long downFlow;
    private long sumFlow;

    //2. 反序列化时,需要反射调用空参构造函数,所以必须有
    public FlowBean() {
    super();
    }

    /**
    *3. 写序列化方法

    • 写出去,序列化
    • @param out
    • @throws IOException
      */
      public void write(DataOutput out) throws IOException {
      out.writeLong(upFlow);
      out.writeLong(downFlow);
      out.writeLong(sumFlow);
      }

    /**
    *4. 反序列化方法

    • 读数据,反序列化
    • @param in
    • @throws IOException
      */
      public void readFields(DataInput in) throws IOException {
      upFlow = in.readLong();
      downFlow = in.readLong();
      sumFlow = in.readLong();
      }

    public long getUpFlow() {
    return upFlow;
    }

    public void setUpFlow(long upFlow) {
    this.upFlow = upFlow;
    }

    public long getDownFlow() {
    return downFlow;
    }

    public void setDownFlow(long downFlow) {
    this.downFlow = downFlow;
    }

    public long getSumFlow() {
    return sumFlow;
    }

    public void setSumFlow(long sumFlow) {
    this.sumFlow = sumFlow;
    }

    // 6. 编写toString方法,方便后续打印到文本
    @Override
    public String toString() {
    return upFlow + “\t” + downFlow + “\t” + sumFlow;
    }

    public void set(long sum_upFlow, long sum_downFlow) {
    this.sumFlow = sum_downFlow + sum_upFlow;
    }
    }

编写Mapper类
/**

  • @Date 2020/7/8 20:28

  • @Version 10.21

  • @Author DuanChaojie
    */
    public class FlowCountMapper extends Mapper<LongWritable,Text, Text, FlowBean> {

    Text k = new Text();
    FlowBean v = new FlowBean();

    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

     // 1. 获取一行
     String line = value.toString();
     // 2. 切割字段
     String[] fields = line.split("\t");
    
     // 3. 封装对象
     k.set(fields[1]);
     v.setUpFlow(Long.parseLong(fields[fields.length-3]));
     v.setDownFlow(Long.parseLong(fields[fields.length-2]));
    
     // 4. 写出
     context.write(k,v);
    

    }
    }

编写Reducer类
/**

  • @Date 2020/7/8 20:38

  • @Version 10.21

  • @Author DuanChaojie
    */
    public class FlowCountReducer extends Reducer<Text, FlowBean, Text,FlowBean> {
    FlowBean v = new FlowBean();

    @Override
    protected void reduce(Text key, Iterable flowBeans, Context context) throws IOException, InterruptedException {

     long sum_upFlow = 0;
     long sum_downFlow = 0;
    
     // 1 遍历所用bean,将其中的上行流量,下行流量分别累加
     for (FlowBean flowBean : flowBeans) {
         sum_upFlow += flowBean.getUpFlow();
         sum_downFlow += flowBean.getDownFlow();
     }
     // 2 封装对象
     v.set(sum_upFlow,sum_downFlow);
     v.setUpFlow(sum_upFlow);
     v.setDownFlow(sum_downFlow);
    
     // 3 写出
     context.write(key,v);
    

    }
    }

编写Driver驱动类
/**

  • @Date 2020/7/8 20:48

  • @Version 10.21

  • @Author DuanChaojie
    */
    public class FlowsumDriver {
    public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
    // 输入输出路径需要根据自己电脑上实际的输入输出路径设置
    // 这样就不需要在通过idea配置了
    args = new String[] { “E:\file\input”, “E:\file\output” };

     // 获取配置信息,或者job对象实例
     Configuration conf = new Configuration();
     Job job = Job.getInstance(conf);
     
     // 指定本程序的jar包所在的本地路径
     job.setJarByClass(FlowsumDriver.class);
    
     // 指定本业务job要使用的mapper/Reducer业务类
     job.setMapperClass(FlowCountMapper.class);
     job.setReducerClass(FlowCountReducer.class);
     // 指定mapper输出数据的kv类型
     job.setMapOutputKeyClass(Text.class);
     job.setMapOutputValueClass(FlowBean.class);
     // 指定最终输出的数据的kv类型
     job.setOutputKeyClass(Text.class);
     job.setOutputValueClass(FlowBean.class);
    
     // 指定job的输入原始文件所在目录
     FileInputFormat.setInputPaths(job,new Path(args[0]));
     FileOutputFormat.setOutputPath(job,new Path(args[1]));
    
     // 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
     boolean result = job.waitForCompletion(true);
    
     System.exit(result?0:1);
    

    }
    }

原文链接:https://blog.csdn.net/weixin_45267102/article/details/107219029

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值