Problem Description
吉哥又想出了一个新的完美队形游戏!
假设有n个人按顺序站在他的面前,他们的身高分别是h[1], h[2] ... h[n],吉哥希望从中挑出一些人,让这些人形成一个新的队形,新的队形若满足以下三点要求,则就是新的完美队形:
1、挑出的人保持原队形的相对顺序不变,且必须都是在原队形中连续的;
2、左右对称,假设有m个人形成新的队形,则第1个人和第m个人身高相同,第2个人和第m-1个人身高相同,依此类推,当然如果m是奇数,中间那个人可以任意;
3、从左到中间那个人,身高需保证不下降,如果用H表示新队形的高度,则H[1] <= H[2] <= H[3] .... <= H[mid]。
现在吉哥想知道:最多能选出多少人组成新的完美队形呢?
Input
输入数据第一行包含一个整数T,表示总共有T组测试数据(T <= 20);
每组数据首先是一个整数n(1 <= n <= 100000),表示原先队形的人数,接下来一行输入n个整数,表示原队形从左到右站的人的身高(50 <= h <= 250,不排除特别矮小和高大的)。
Output
请输出能组成完美队形的最多人数,每组输出占一行。
Sample Input
2
3
51 52 51
4
51 52 52 51
Sample Output
3
4
Source
解题思路:稍稍修改Manacher算法来保证正确的顺序,具体看程序
AC的C++程序:
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=200010;
int s[N],p[N],n;
int Manacher(int s[])
{
p[0]=0;
s[0]=-111;
for(int i=n;i>0;i--)
s[2*i]=s[i];
n=2*n+1;
for(int i=1;i<=n;i+=2)
s[i]=300;
s[n+1]=111;
int id=0,mx=0;
for(int i=1;i<=n;i++)
{
p[i]=i<mx?(min(p[2*id-i],mx-i)):1;
int k=s[i];
while(s[i+p[i]]==s[i-p[i]]&&(s[i-p[i]]==300||s[i-p[i]]<=k))//判断递增
{
if(s[i-p[i]]!=300)
k=s[i-p[i]];
p[i]++;
}
if(i+p[i]>mx)
{
id=i;
mx=i+p[i];
}
}
int ans=0;
for(int i=1;i<=n;i++)
ans=max(ans,p[i]-1);
return ans;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&s[i]);
int ans=Manacher(s);
printf("%d\n",ans);
}
return 0;
}