《微积分:一元函数积分学》——基本积分表

基本

(1)\int kdx=kx+C

(2)\int x^{u}dx=\frac{x^{u+1}}{u+1}+C

(3)\int \frac{1}{x}=ln\left | x \right |+C

(4)\int \frac{1}{1+x^{2}}dx=arctanx+C

(5)\int \frac{1}{\sqrt{1-x^{2}}}dx=arcsinx+C

(6)\int dx=x+C

(7)\int \frac{1}{x^{2}}=-\frac{1}{x}+C

(8)\int \frac{1}{\sqrt{x}}dx=2\sqrt{x}+C

(9)\int \frac{dx}{a^{2}+x^{2}}=\frac{1}{a}acrtan\frac{x}{a}+C

(10)\int \frac{dx}{x^{2}-a^{2}}=\frac{1}{2a}ln\left | \frac{x-a}{x+a}\right |+C

(11)\int \frac{dx}{\sqrt{a^{2}-x^{2}}}=acrsin\frac{x}{a}+C

(12)\int \frac{dx}{\sqrt{x^{2}+a^{2}}}=ln(x+\sqrt{x^{2}+a^2})+C

(13)\int \frac{dx}{\sqrt{x^{2}-a^{2}}}=ln\left | x+\sqrt{x^{2}-a^{2}} \right | +C

指数函数

(1)\int a^{x}dx=\frac{a^{x}}{lna}+C

(2)\int e^{x}dx=e^{x}+C

对数函数

(1)\int lnx=xlnx-x+C

(2)\int \frac{dx}{xlnx}=ln\left | lnx \right |+C

三角函数

(1)\int sinxdx=-cosx+C

(2)\int cosxdx=sinx+C

(3)\int tanxdx=-ln\left | cosx \right |+C

(4)\int cotxdx=ln \left| sinx\right|+C

(5)\int secxdx=ln\left|secx+tanx \right |+C

(6)\int cscxdx=ln\left | cscx-cotx \right |+C

(7)\int sin^{2}xdx=\frac{1-cos2x}{2}=\frac{x}{2}-\frac{1}{4}sin2x+C

(8)\int cos^{2}xdx=\frac{1+cos2x}{2}=\frac{x}{2}+\frac{1}{4}sin2x+C

(9)\int \frac{1}{sin^{2}x}=\int csc^{2}xdx=-cotx+C

(10)\int \frac{1}{cos^{2}x}=\int sec^{2}xdx=tanx+C

(11)\int secxtanxdx=secx+C

(12)\int cscxcotxdx=-cscx+C

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值