《微积分:一元函数微分学》——柯西中值定理

定理

设 f(x) ,g(x) 满足

  • [a,b]上连续
  • (a,b)内可导
  • g'(x)\neq 0

\exists \varepsilon\in (a,b)

使得

\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(\varepsilon )}{g'(\varepsilon )}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值