Java实现短信发送并校验,华为云短信配合Redis实现发送与校验

Java实现短信发送并校验,华为云短信配合Redis实现发送与校验

安装sms4j和redis

<dependency>
    <groupId>org.dromara.sms4j</groupId>
    <artifactId>sms4j-spring-boot-starter</artifactId>
    <version>3.2.1</version>
</dependency>

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

sms4j使用

使用sms4j可以非常简单的实现短信发送功能,并且适配了主流的云平台

官方文档地址

image-20240414174534878

添加配置

# redis配置
spring:
  redis:
    database: 0
    host: xxx.xxx.xxx.xxx
    port: 6379
    timeout: 1200

# 发送短信的配置
sms:
  # 标注从yml读取配置
  config-type: yaml
  # 用于标定yml中的配置是否开启短信拦截,接口配置不受此限制
  restricted: true
  # 短信拦截限制单手机号每日最大发送量,只对开启了拦截的配置有效
  account-max: 8
  # 短信拦截限制单手机号每分钟最大发送,只对开启了拦截的配置有效
  minute-max: 2
  # 是否打印http log
  http-log: true
  # 是否打印banner
  is-print: false
  # 短信厂商核心配置容纳
  blends:
    tx1:
      supplier: huawei
      #您的accessKey
      access-key-id: 您的accessKey
      #您的accessKeySecret
      access-key-secret:您的accessKeySecret
      #您的短信签名
      signature: 您的短信签名
      #模板ID 非必须配置,如果使用sendMessage的快速发送需此配置
      template-id: 模板ID
      # 通道号
      sender: 通道号
      # 配置Id
      config-id: tx1
      #华为回调地址,如不需要可不设置或为空
      statusCallBack:
      #华为分配的app请求地址
      url: https://smsapi.cn-north-4.myhuaweicloud.com:443

accessKey、accessKeySecret等可以在华为云控制台,短信服务-我的应用查看

template-id、sender 在短信模板审核通过后可以获知

更多配置可见:https://sms4j.com/doc3/config.html

发送短信

新建一个 SmsController,这里编写了两个接口,一个用于发送短信,一个用于验证短信。

这里用到了Redis做验证码有效期缓存,缓存5分钟

还用到了 SmsUtils.getRandomInt(6) 生成一个6位数纯数字的随机数,这个 SmsUtilsorg.dromara.sms4j 内置提供好的

package com.szx.edu.controller;

import com.szx.commonutils.Msg;
import com.szx.edu.utils.redisUtil.RedisServiceImpl;
import io.swagger.annotations.Api;
import org.apache.commons.lang.StringUtils;
import org.dromara.sms4j.api.SmsBlend;
import org.dromara.sms4j.api.entity.SmsResponse;
import org.dromara.sms4j.comm.utils.SmsUtils;
import org.dromara.sms4j.core.factory.SmsFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.*;

/**
 * @author songzx
 * @create 2024-04-12 21:22
 */
@Api(tags = "发送短信")
@RestController
@RequestMapping("/sms")
public class SmsController {
    @Autowired
    RedisServiceImpl redisService;

    @GetMapping("getCode")
    public Msg getCode(String phone){
        // 1.生成一个随机验证码
        String randomCode = SmsUtils.getRandomInt(6);
        // 2.获取指定配置
        SmsBlend smsBlend = SmsFactory.getSmsBlend();
        // 3.发送短信
        SmsResponse smsResponse = smsBlend.sendMessage(phone,randomCode);
        // 4.判断是否成功
        boolean success = smsResponse.isSuccess();
        if(success){
            // 如果发送成功,再吧验证码保存到缓存中,并设置缓存时长300秒
            redisService.cacheValue(phone,randomCode,300);
            return Msg.Ok();
        }else{
            return Msg.Error().msg("验证码发送失败");
        }
    }

    @PostMapping("checkCode")
    public Msg checkCode(String phone,String code){
        // 获取缓存的code
        String cacheCode = redisService.getValue(phone);
        // 判断得到的code和用户传递进来的code是否一样
        if(StringUtils.isNotEmpty(cacheCode) && code.equals(cacheCode)){
            return Msg.Ok().data("status","ok");
        }else{
            return Msg.Error().msg("请输入正确的验证码");
        }
    }
}

Redis配置

添加配置类

新建 RedisConfig

package com.szx.edu.config;

import com.fasterxml.jackson.annotation.JsonAutoDetect;
import com.fasterxml.jackson.annotation.PropertyAccessor;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.springframework.cache.CacheManager;
import org.springframework.cache.annotation.EnableCaching;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.cache.RedisCacheConfiguration;
import org.springframework.data.redis.cache.RedisCacheManager;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.RedisSerializationContext;
import org.springframework.data.redis.serializer.RedisSerializer;
import org.springframework.data.redis.serializer.StringRedisSerializer;

import java.time.Duration;

/**
 * @author songzx
 * @create 2024-03-08 10:58
 */
@EnableCaching
@Configuration
public class RedisConfig {
    @Bean
    public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory factory) {
        RedisTemplate<String, Object> template = new RedisTemplate<>();
        RedisSerializer<String> redisSerializer = new StringRedisSerializer();
        Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);
        ObjectMapper om = new ObjectMapper();
        om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
        om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
        jackson2JsonRedisSerializer.setObjectMapper(om);
        template.setConnectionFactory(factory);
        //key序列化方式
        template.setKeySerializer(redisSerializer);
        //value序列化
        template.setValueSerializer(jackson2JsonRedisSerializer);
        //value hashmap序列化
        template.setHashValueSerializer(jackson2JsonRedisSerializer);
        return template;
    }

    @Bean
    public CacheManager cacheManager(RedisConnectionFactory factory) {
        RedisSerializer<String> redisSerializer = new StringRedisSerializer();
        Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);
        //解决查询缓存转换异常的问题
        ObjectMapper om = new ObjectMapper();
        om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
        om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
        jackson2JsonRedisSerializer.setObjectMapper(om);
        // 配置序列化(解决乱码的问题),过期时间600秒
        RedisCacheConfiguration config = RedisCacheConfiguration.defaultCacheConfig()
                .entryTtl(Duration.ofSeconds(600))
                //变双冒号为单冒号
                .computePrefixWith(name -> name +":")
                .serializeKeysWith(RedisSerializationContext.SerializationPair.fromSerializer(redisSerializer))
                .serializeValuesWith(RedisSerializationContext.SerializationPair.fromSerializer(jackson2JsonRedisSerializer))
                .disableCachingNullValues();
        RedisCacheManager cacheManager = RedisCacheManager.builder(factory)
                .cacheDefaults(config)
                .build();
        return cacheManager;
    }
}

添加工具类

新建 RedisService,这个文件是 interface 类型

package com.szx.edu.utils.redisUtil;

import org.springframework.data.redis.core.ListOperations;

import java.util.List;
import java.util.Set;

/**
 * @author songzx
 * @create 2024-03-08 10:49
 */
public interface RedisService {
    /**
     * 添加 key:string 缓存
     *
     * @param key    key
     * @param value    value
     * @param time time
     * @return
     */
    boolean cacheValue(String key, String value, long time);


    /**
     * 添加 key:string 缓存
     *
     * @param key   key
     * @param value value
     * @return
     */
    boolean cacheValue(String key, String value);


    /**
     * 根据 key:string 判断缓存是否存在
     *
     * @param key key
     * @return boolean
     */
    boolean containsValueKey(String key);


    /**
     * 判断缓存 key:set集合 是否存在
     *
     * @param key key
     * @return
     */
    boolean containsSetKey(String key);


    /**
     * 判断缓存 key:list集合 是否存在
     *
     * @param key key
     * @return boolean
     */
    boolean containsListKey(String key);


    /**
     * 查询缓存 key 是否存在
     * @param key key
     * @return true/false
     */
    boolean containsKey(String key);


    /**
     * 根据 key 获取缓存value
     *
     * @param key key
     * @return value
     */
    String getValue(String key);


    /**
     * 根据 key 移除 value 缓存
     *
     * @param key key
     * @return true/false
     */
    boolean removeValue(String key);


    /**
     * 根据 key 移除 set 缓存
     *
     * @param key key
     * @return true/false
     */
    boolean removeSet(String key);


    /**
     * 根据 key 移除 list 缓存
     *
     * @param key key
     * @return true/false
     */
    boolean removeList(String key);


    /**
     * 缓存set操作
     *
     * @param key    key
     * @param value    value
     * @param time time
     * @return boolean
     */
    boolean cacheSet(String key, String value, long time);


    /**
     * 添加 set 缓存
     *
     * @param key   key
     * @param value value
     * @return true/false
     */
    boolean cacheSet(String key, String value);


    /**
     * 添加 缓存 set
     *
     * @param k    key
     * @param v    value
     * @param time 时间
     * @return
     */
    boolean cacheSet(String k, Set<String> v, long time);


    /**
     * 缓存 set
     * @param k key
     * @param v value
     * @return
     */
    boolean cacheSet(String k, Set<String> v);


    /**
     * 获取缓存set数据
     * @param k key
     * @return set集合
     */
    Set<String> getSet(String k);


    /**
     * list 缓存
     * @param k key
     * @param v value
     * @param time 时间
     * @return true/false
     */
    boolean cacheList(String k, String v, long time);


    /**
     * 缓存 list
     * @param k key
     * @param v value
     * @return true/false
     */
    boolean cacheList(String k, String v);


    /**
     * 缓存 list 集合
     * @param k key
     * @param v value
     * @param time 时间
     * @return
     */
    boolean cacheList(String k, List<String> v, long time);


    /**
     *  缓存 list
     * @param k key
     * @param v value
     * @return true/false
     */
    boolean cacheList(String k, List<String> v);


    /**
     * 根据 key 获取 list 缓存
     * @param k key
     * @param start 开始
     * @param end 结束
     * @return 获取缓存区间内 所有value
     */
    List<String> getList(String k, long start, long end);


    /**
     * 根据 key 获取总条数 用于分页
     * @param key key
     * @return 条数
     */
    long getListSize(String key);


    /**
     * 获取总条数 用于分页
     * @param listOps =redisTemplate.opsForList();
     * @param k key
     * @return size
     */
    long getListSize(ListOperations<String, String> listOps, String k);


    /**
     * 根据 key 移除 list 缓存
     * @param k key
     * @return
     */
    boolean removeOneOfList(String k);
}

然后添加接口实现类

RedisServiceImpl

package com.szx.edu.utils.redisUtil;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.ListOperations;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.core.SetOperations;
import org.springframework.data.redis.core.ValueOperations;
import org.springframework.stereotype.Service;

import java.util.List;
import java.util.Set;
import java.util.concurrent.TimeUnit;

/**
 * @author songzx
 * @create 2024-03-08 10:50
 */
@Service
public class RedisServiceImpl implements RedisService {
    /**
     * slf4j 日志
     */
    private final Logger log = LoggerFactory.getLogger(this.getClass());


    /**
     * 自定义 key 三种
     *  String key:String value         普通key:value
     *  String key:Set<String> set      key:set集合
     *  String key:List<String> list    key:list集合
     */
    private static final String KEY_PREFIX_KEY = "info:bear:key";
    private static final String KEY_PREFIX_SET = "info:bear:set";
    private static final String KEY_PREFIX_LIST = "info:bear:list";


    private final RedisTemplate<String, String> redisTemplate;


    /**
     * 注入
     * @param redisTemplate 模板
     */
    @Autowired
    public RedisServiceImpl(RedisTemplate<String, String> redisTemplate) {
        this.redisTemplate = redisTemplate;
    }


    /**
     * 添加 key:string 缓存
     *
     * @param k    key
     * @param v    value
     * @param time time
     * @return
     */
    @Override
    public boolean cacheValue(String k, String v, long time) {
        try {
            String key = KEY_PREFIX_KEY + k;
            ValueOperations<String, String> ops = redisTemplate.opsForValue();
            ops.set(key, v);
            if (time > 0) {
                redisTemplate.expire(key, time, TimeUnit.SECONDS);
            }
            return true;
        } catch (Throwable e) {
            log.error("缓存存入失败key:[{}] value:[{}]", k, v);
        }
        return false;
    }

    /**
     * 添加 key:string 缓存
     *
     * @param key   key
     * @param value value
     * @return
     */
    @Override
    public boolean cacheValue(String key, String value) {
        return cacheValue(key, value, -1);
    }


    /**
     * 根据 key:string 判断缓存是否存在
     *
     * @param key key
     * @return boolean
     */
    @Override
    public boolean containsValueKey(String key) {
        return containsKey(KEY_PREFIX_KEY + key);
    }


    /**
     * 判断缓存 key:set集合 是否存在
     *
     * @param key key
     * @return
     */
    @Override
    public boolean containsSetKey(String key) {
        return containsKey(KEY_PREFIX_SET + key);
    }


    /**
     * 判断缓存 key:list集合 是否存在
     *
     * @param key key
     * @return boolean
     */
    @Override
    public boolean containsListKey(String key) {
        return containsKey(KEY_PREFIX_LIST + key);
    }


    /**
     * 查询缓存 key 是否存在
     * @param key key
     * @return true/false
     */
    @Override
    public boolean containsKey(String key) {
        try {
            return redisTemplate.hasKey(key);
        } catch (Throwable e) {
            log.error("判断缓存存在失败key:[" + key + "],错误信息 Codeor[{}]", e);
        }
        return false;
    }


    /**
     * 根据 key 获取缓存value
     *
     * @param key key
     * @return value
     */
    @Override
    public String getValue(String key) {
        try {
            ValueOperations<String, String> ops = redisTemplate.opsForValue();
            return ops.get(KEY_PREFIX_KEY + key);
        } catch (Throwable e) {
            log.error("根据 key 获取缓存失败,当前key:[{}],失败原因 Codeor:[{}]", key, e);
        }
        return null;
    }


    /**
     * 缓存set操作
     *
     * @param k    key
     * @param v    value
     * @param time time
     * @return boolean
     */
    @Override
    public boolean cacheSet(String k, String v, long time) {
        try {
            String key = KEY_PREFIX_SET + k;
            SetOperations<String, String> opsForSet = redisTemplate.opsForSet();
            opsForSet.add(key, v);
            if (time > 0) {
                redisTemplate.expire(key, time, TimeUnit.SECONDS);
            }
            return true;
        } catch (Throwable e) {
            log.error("缓存 set 失败 当前 key:[{}] 失败原因 [{}]", k, e);
        }
        return false;
    }


    /**
     * 添加 set 缓存
     *
     * @param key   key
     * @param value value
     * @return true/false
     */
    @Override
    public boolean cacheSet(String key, String value) {
        return cacheSet(key, value, -1);
    }


    /**
     * 添加 缓存 set
     *
     * @param k    key
     * @param v    value
     * @param time 时间
     * @return
     */
    @Override
    public boolean cacheSet(String k, Set<String> v, long time) {
        try {
            String key = KEY_PREFIX_SET + k;
            SetOperations<String, String> opsForSet = redisTemplate.opsForSet();
            opsForSet.add(key, v.toArray(new String[v.size()]));
            if (time > 0){
                redisTemplate.expire(key,time,TimeUnit.SECONDS);
            }
            return true;
        } catch (Throwable e) {
            log.error("缓存 set 失败 当前 key:[{}],失败原因 [{}]", k, e);
        }
        return false;
    }


    /**
     * 缓存 set
     * @param k key
     * @param v value
     * @return
     */
    @Override
    public boolean cacheSet(String k, Set<String> v) {
        return cacheSet(k,v,-1);
    }


    /**
     * 获取缓存set数据
     * @param k key
     * @return set集合
     */
    @Override
    public Set<String> getSet(String k) {
        try {
            String key = KEY_PREFIX_SET + k;
            SetOperations<String, String> opsForSet = redisTemplate.opsForSet();
            return opsForSet.members(key);
        }catch (Throwable e){
            log.error("获取缓存set失败 当前 key:[{}],失败原因 [{}]", k, e);
        }
        return null;
    }


    /**
     * list 缓存
     * @param k key
     * @param v value
     * @param time 时间
     * @return true/false
     */
    @Override
    public boolean cacheList(String k, String v, long time) {
        try {
            String key = KEY_PREFIX_LIST + k;
            ListOperations<String, String> opsForList = redisTemplate.opsForList();
            //此处为right push 方法/ 也可以 left push ..
            opsForList.rightPush(key,v);
            if (time > 0){
                redisTemplate.expire(key,time,TimeUnit.SECONDS);
            }
            return true;
        }catch (Throwable e){
            log.error("缓存list失败 当前 key:[{}],失败原因 [{}]", k, e);
        }
        return false;
    }


    /**
     * 缓存 list
     * @param k key
     * @param v value
     * @return true/false
     */
    @Override
    public boolean cacheList(String k, String v) {
        return cacheList(k,v,-1);
    }


    /**
     * 缓存 list 集合
     * @param k key
     * @param v value
     * @param time 时间
     * @return
     */
    @Override
    public boolean cacheList(String k, List<String> v, long time) {
        try {
            String key = KEY_PREFIX_LIST + k;
            ListOperations<String, String> opsForList = redisTemplate.opsForList();
            opsForList.rightPushAll(key,v);
            if (time > 0){
                redisTemplate.expire(key,time,TimeUnit.SECONDS);
            }
            return true;
        }catch (Throwable e){
            log.error("缓存list失败 当前 key:[{}],失败原因 [{}]", k, e);
        }
        return false;
    }


    /**
     *  缓存 list
     * @param k key
     * @param v value
     * @return true/false
     */
    @Override
    public boolean cacheList(String k, List<String> v) {
        return cacheList(k,v,-1);
    }


    /**
     * 根据 key 获取 list 缓存
     * @param k key
     * @param start 开始
     * @param end 结束
     * @return 获取缓存区间内 所有value
     */
    @Override
    public List<String> getList(String k, long start, long end) {
        try {
            String key = KEY_PREFIX_LIST + k;
            ListOperations<String, String> opsForList = redisTemplate.opsForList();
            return opsForList.range(key,start,end);
        }catch (Throwable e){
            log.error("获取list缓存失败 当前 key:[{}],失败原因 [{}]", k, e);
        }
        return null;
    }


    /**
     * 根据 key 获取总条数 用于分页
     * @param key key
     * @return 条数
     */
    @Override
    public long getListSize(String key) {
        try {
            ListOperations<String, String> opsForList = redisTemplate.opsForList();
            return opsForList.size(KEY_PREFIX_LIST + key);
        }catch (Throwable e){
            log.error("获取list长度失败key[" + KEY_PREFIX_LIST + key + "], Codeor[" + e + "]");
        }
        return 0;
    }


    /**
     * 获取总条数 用于分页
     * @param listOps =redisTemplate.opsForList();
     * @param k key
     * @return size
     */
    @Override
    public long getListSize(ListOperations<String, String> listOps, String k) {
        try {
            return listOps.size(k);
        }catch (Throwable e){
            log.error("获取list长度失败key[" + KEY_PREFIX_LIST + k + "], Codeor[" + e + "]");
        }
        return 0;
    }


    /**
     * 根据 key 移除 list 缓存
     * @param k key
     * @return
     */
    @Override
    public boolean removeOneOfList(String k) {
        try {
            String key = KEY_PREFIX_LIST + k;
            ListOperations<String, String> opsForList = redisTemplate.opsForList();
            opsForList.rightPop(key);
            return true;
        }catch (Throwable e){
            log.error("移除list缓存失败 key[" + KEY_PREFIX_LIST + k + "], Codeor[" + e + "]");
        }
        return false;
    }


    /**
     * 根据 key 移除 value 缓存
     *
     * @param key key
     * @return true/false
     */
    @Override
    public boolean removeValue(String key) {
        return remove(KEY_PREFIX_KEY + key);
    }


    /**
     * 根据 key 移除 set 缓存
     *
     * @param key key
     * @return true/false
     */
    @Override
    public boolean removeSet(String key) {
        return remove(KEY_PREFIX_SET + key);
    }


    /**
     * 根据 key 移除 list 缓存
     *
     * @param key key
     * @return true/false
     */
    @Override
    public boolean removeList(String key) {
        return remove(KEY_PREFIX_LIST + key);
    }


    /**
     * 移除缓存
     *
     * @param key key
     * @return boolean
     */
    private boolean remove(String key) {
        try {
            redisTemplate.delete(key);
            return true;
        } catch (Throwable e) {
            log.error("移除缓存失败 key:[{}] 失败原因 [{}]", key, e);
        }
        return false;
    }
}

测试接口

首先测试发送短信,可以看到正常发送

image-20240414180207232

然后去Redis中查看,缓存的值是 232868

在这里插入图片描述

此时我手机接收到的也是 232868

然后故意输入错误的试一试

image-20240414180554472

然后再输入正确的

image-20240414180623568

然后等待五分钟之后,刷新Redis,发现缓存的值自动删除了

在这里插入图片描述

这时再去发起验证接口试一试

image-20240414180835576

可以看到,这个验证码已经不能用了

到这里我们就实现了短信的发送和验证功能

<think>好的,用户想了解基于OpenHarmony的智能家居场景控制系统的后端设计所需的技术栈架构。首先,我需要回顾一下OpenHarmony的相关资料,结合已有的引用内容。 引用中提到,HiLink是华为的智能家居平台,统一了设备接入标准。而OpenHarmony作为开源系统,支持多设备协同,适合物联网场景。因此,后端设计需要考虑设备管理、通信协议、数据存储安全性。 技术栈方面,应该包括分布式架构,因为OpenHarmony强调分布式能力。通信协议可能涉及MQTT、CoAP等物联网常用协议。数据存储可能需要轻量级数据库,如SQLite或时序数据库。微服务架构可能适合后端服务拆分,使用Spring Boot或Node.js。此外,安全模块如身份认证数据加密也是必要的。 架构设计上,分层结构比较合理,包括设备接入层、服务层、数据层应用层。设备接入层处理协议适配,服务层实现业务逻辑,数据层管理存储,应用层提供API。同时,需要考虑分布式软总线设备虚拟化,确保设备间的协作。 还要注意现有系统的集成,比如HiLink或其他平台的兼容性。可能需要API网关来统一管理接口,提高系统的扩展性维护性。性能优化方面,负载均衡缓存机制也很重要。 最后,引用中的HarmonyOS开发技术,如ArkTS消息事件处理,可能在后端前端的交互中发挥作用,比如实时更新设备状态。需要确认后端如何支持这些前端需求,比如通过WebSocket推送数据。 总结下来,需要涵盖分布式架构、通信协议、微服务、安全机制、数据存储以及系统集成等方面,确保后端稳定、可扩展且安全。</think>基于OpenHarmony的智能家居场景控制系统后端设计需要结合分布式架构物联网特性,以下是关键技术栈架构设计分析: --- ### 一、技术栈核心组成 1. **分布式系统框架** - 使用OpenHarmony的**分布式软总线**实现设备间低时延通信 - 基于**分布式数据管理**实现多设备数据同步,如设备状态共享 - 示例代码框架: ```java // 设备发现连接 DeviceManager.registerDeviceStateCallback(callback); ``` 2. **通信协议适配** - 物联网协议:支持MQTT(轻量级消息传输)、CoAP(受限设备通信) - 自定义协议:通过**DeviceProfile**定义设备能力描述文件 - 安全通道:集成DTLS/TLS加密传输[^1] 3. **微服务架构** - 使用**Spring Boot**或**Node.js**构建业务微服务 - 容器化部署:Docker+Kubernetes实现弹性扩缩容 - 关键服务模块: - 设备控制服务 - 场景规则引擎 - 用户权限管理 4. **数据存储方案** - 时序数据库:InfluxDB存储设备传感器数据 - 关系型数据库:MySQL存储用户配置场景策略 - 边缘存储:SQLite实现本地数据缓存[^2] --- ### 二、系统架构设计 ```plaintext +-------------------+ | API Gateway | +-------------------+ | v +---------------+ +----------------------------+ +-------------+ | 智能设备接入层 |<---->| 分布式服务层 (OpenHarmony) |<---->| 数据持久层 | | (MQTT/CoAP) | | - 设备管理 | | - MySQL | +---------------+ | - 场景规则引擎 | | - InfluxDB | | - 安全认证中心 | +-------------+ +----------------------------+ | v +-------------------+ | 第三方服务集成 | | (HiLink/语音助手) | +-------------------+ ``` --- ### 三、关键技术实现 1. **设备虚拟化** - 通过**Device Virtualization**将物理设备抽象为数字孪生体 - 实现设备状态实时映射: $$ \text{Device}_{virtual} = f(\text{Device}_{physical}) $$ 2. **规则引擎设计** - 使用Drools规则引擎实现场景联动 - 示例规则: ```python when TemperatureSensor.value > 26℃ then AirConditioner.setMode("cooling") ``` 3. **安全机制** - 基于OpenHarmony的**权限分级控制** - 设备认证:双向证书校验 - 数据加密:SM4国密算法应用[^1] --- ### 四、性能优化策略 1. **边缘计算**:在网关侧部署轻量级推理模型 2. **消息队列**:Kafka缓冲高发设备事件 3. **缓存机制**:Redis缓存频繁访问的设备元数据 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值