目录
1.顺序表的定义
线性表的顺序存储又称顺序表。它是用一组地址连续的存储单元依次存储线性表中的数据元素,从而使得逻辑上相邻的两个元素在物理上也相邻。因此,顺序表的特点是表中元素的逻辑结构与其存储的物理结构也相同。
位序:第 i 个元素的存储位置后面紧接着存储的是第i+1个元素,称i为元素a i在顺序表中的位序。
注:位序从1开始,数组下标从0开始。(数组下标从0开始是为了更快的寻址,减少一次减法运算,从而提升CPU的运算效率。)
设顺序表的起始位置为LOC(A),每个数据元素所占据的空间大小为sizeof(ElemType),则顺序表对应的存储结构如下:
每个元素的存储位置都与顺序表的起始位置相差 n(n>=0) 个位序,所以顺序表中的任意一个元素都可以随机存取。线性表的顺序存储结构是一种随机存取的存储结构。在高级程序设计语言中,常用数组来表示线性表的顺序存储结构。
2.顺序表的优缺点
2.1优点
1.可进行随机访问,可通过首地址和位序在O(1)时间内找到指定的元素。
2.存储密度高,每个结点只存储数据元素。
2.2缺点
1.元素的插入和删除需要移动大量元素,插入操作平均移动n/2个元素,删除平均需移动(n-1)/2个元素。
2.顺序存储分配需要一段连续的存储空间,不够灵活。
3.顺序表基本操作的实现
一维数组可以是静态分配的,也可以是动态分配的。所以顺序表的实现方式有两种,分别为静态实现和动态实现。实际运用中,多以动态分配为主。
3.1创建顺序表(动态实现)
typedef int SLDataType;//定义一个顺序表
//顺序表的动态存储
typedef struct SeqList
{
SLDataType* a;//指向动态开辟的数组
int size;//有效数据个数
int capacity;//空间容量
}SL;
3.2创建和销毁
void SLInit(SL* ps1);//创建顺序表
void SLDstory(SL* ps1);//销毁顺序表
void SLInit(SL* ps1)
{
assert(ps1);
ps1->a = NULL;
ps1->size = 0;
ps1->capacity = 0;
}
void SLDstory(SL* ps1)
{
assert(ps1);
if (ps1->a != NULL)
{
free(ps1->a);
ps1->a = NULL;
ps1->size = 0;
ps1->capacity = 0;
}
}
3.3打印和检查(扩容操作)
void SLPrint(SL* ps1);//打印顺序表
void SLCheckCapacity(SL* ps1);//检查顺序表空间是否够用然后决定扩容与否
void SLPrint(SL* ps1)
{
for (int i = 0; i < ps1->size; i++)//对顺序表进行遍历输出
{
printf("%d ",ps1->a[i]);
}
printf(" \n");
}
void SLCheckCapacity(SL* ps1)
{
assert(ps1);//检查
if (ps1->size == ps1->capacity)//是否扩容的判断条件
{
int newCapacity = ps1->capacity == 0 ? 4 : ps1->capacity * 2;
//扩容大小的选择,空表开辟四个地址空间,其余扩容至2倍。
//2倍是一种合适的选择,当然在空间够用的情况下,想扩容几倍看你心情。
SLDataType* tmp = (SLDataType*)realloc(ps1->a, sizeof(SLDataType) * newCapacity);
//开辟空间进行扩容操作
if (tmp == NULL)
{
perror("realloc fail");
return;
}
//无空间使用,扩容失败。
ps1->a = tmp;
ps1->capacity = newCapacity;
//将扩容后空间更新
}
}
扩容操作利用realloc函数,位于C标准库(#include<stdlib.h>)当中。
分为原地扩容和异地扩容。
原地扩容:直接copy原来空间大小在后续地址块上。
异地扩容:后续地址块不够用,在新的地址上开辟一块足够大小的新空间,将原来的内容拷贝过来,释放原来的空间并传回新空间的地址。
3.4插入
3.4.1尾插
最好情况:在表尾插入元素,没有元素后移操作。时间复杂度为O(1)。
void SLPushBack(SL* ps1, SLDataType x);//尾插
void SLPushBack(SL* ps1, SLDataType x)
{
assert(ps1);
SLCheckCapacity(ps1);//检查线性表空间容量
ps1->a[ps1->size] = x;//插入元素
ps1->size++;//线性表有效长度增加
}
3.4.2头插
最坏情况:在表头插入,元素后移语句执行n次。时间复杂度为O(n)。
void SLPushFront(SL* ps1, SLDataType x);//头插
void SLPushFront(SL* ps1, SLDataType x)
{
assert(ps1);
SLCheckCapacity(ps1);//检查空间容量
//挪动数据
int end = ps1->size - 1;
while (end >= 0)
{
ps1->a[end + 1] = ps1->a[end];
//先挪动尾部,从尾至头依次挪动。
--end;
}
ps1->a[0] = x;//头部插入元素
ps1->size++;//线性表长度增加
}
平均情况:n/2
顺序表插入操作的算法平均时间复杂度为O(n)。
3.5删除
3.5.1尾删
最好情况:删除表尾元素,无需移动元素。时间复杂度为O(1)。
void SLPopBack(SL* ps1);//尾删
void SLPopBack(SL* ps1)
{
assert(ps1);//
//温柔的检查
//if(ps1->size==0)
//{
//return;
//}
//暴力检查
assert(ps1->size > 0);
//ps1->a[ps1->size-1]=-1;
ps1->size--;//直接减少线性表有限数据长度
}
3.5.2头删
最坏情况:删除表头元素,需移动除表头外的所有元素,时间复杂度为O(n)。
void SLPopFront(SL* ps1);//头删
void SLPopFront(SL* ps1)
{
assert(ps1);
//暴力检查
assert(ps1->size > 0);
int begin = 1;//定义开始挪动的节点位置
while (begin < ps1->size)
{
ps1->a[begin - 1] = ps1->a[begin];//后面元素挪动到前一位覆盖
++begin;
}
ps1->size--;//线性表长度减一
}
平均: n-1/2
顺序表删除操作的算法平均时间复杂度为O(n)。
3.6在指定位置插入和删除元素
3.6.1指定位置插入元素
void SLInsert(SL* ps1, int pos, SLDataType x);//在pos位置插入x
//pos下标
//size 数据个数,看作下标的话,是最后一个数据的下一个位置
void SLInsert(SL* ps1, int pos, SLDataType x)
{
assert(ps1);
assert(pos >= 0 && pos <= ps1->size);
SLCheckCapacity(ps1);
//挪动数据
int end = ps1->size - 1;
while (end >= pos)
{
ps1->a[end + 1] = ps1->a[end];
--end;
}
ps1->a[pos] = x;
ps1->size++;
}
3.6.2指定位置删除元素
void SLErase(SL* p1, int pos);//在pos位置删除x
//pos下标
//size 数据个数,看作下标的话,是最后一个数据的下一个位置
void SLErase(SL* ps1, int pos)
{
assert(ps1);
assert(pos >= 0 && pos < ps1->size);
//挪动覆盖
int begin = pos + 1;
while (begin < ps1->size)
{
ps1->a[begin - 1] = ps1->a[begin];
++begin;
}
ps1->size--;
}