concurrenthashmap为什么是线程安全
一、HashMap和ConcurrentHashMap的对比
我们用一段代码证明下HashMap的线程不安全,以及ConcurrentHashMap的线程安全性。代码逻辑很简单,开启10000个线程,每个线程做很简单的操作,就是put一个key,然后删除一个key,理论上线程安全的情况下,最后map的size()肯定为0。
Map myMap=new HashMap<>();
// ConcurrentHashMap myMap=new ConcurrentHashMap();
for (int i = 0; i <10000 ; i++) {
new Thread(new Runnable() {
@Override
public void run() {
double a=Math.random();
myMap.put(a,a);
myMap.remove(a);
}
}).start();
}
Thread.sleep(15000l);//多休眠下,保证上面的线程操作完毕。
System.out.println(myMap.size());
这里显示Map的size=13,但是实际上map里还有一个key。 同样的代码我们用ConcurrentHashMap来运行下,结果map ==0
这里也就证明了ConcurrentHashMap是线程安全的,我们接下来从源码分析下ConcurrentHashMap是如何保证线程安全的,本次源码jdk版本为1.8。
二、ConcurrentHashMap源码分析
3.1 ConcurrentHashMap的基础属性
//默认最大的容量
private static final int MAXIMUM_CAPACITY = 1 << 30;
//默认初始化的容量
private static final int DEFAULT_CAPACITY = 16;
//最大的数组可能长度
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
//默认的并发级别,目前并没有用,只是为了保持兼容性
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
//和hashMap一样,负载因子
private static final float LOAD_FACTOR = 0.75f;
//和HashMap一样,链表转换为红黑树的阈值,默认是8
static final int TREEIFY_THRESHOLD = 8;
//红黑树转换链表的阀值,默认是6
static final int UNTREEIFY_THRESHOLD = 6;
//进行链表转换最少需要的数组长度,如果没有达到这个数字,只能进行扩容
static final int MIN_TREEIFY_CAPACITY = 64;
//table扩容时, 每个线程最少迁移table的槽位个数
private static final int MIN_TRANSFER_STRIDE = 16;
//感觉是用来计算偏移量和线程数量的标记
private static int RESIZE_STAMP_BITS = 16;
//能够调整的最大线程数量
private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
//记录偏移量
private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
//值为-1, 当Node.hash为MOVED时, 代表着table正在扩容
static final int MOVED = -1;
//TREEBIN, 置为-2, 代表此元素后接红黑树
static final int TREEBIN = -2;
//感觉是占位符,目前没看出来明显的作用
static final int RESERVED = -3;
//主要用来计算Hash值的
static final int HASH_BITS = 0x7fffffff;
//节点数组
transient volatile Node[] table;
//table迁移过程临时变量, 在迁移过程中将元素全部迁移到nextTable上
private transient volatile Node[] nextTable;
//基础计数器
private transient volatile long baseCount;
//table扩容和初始化的标记,不同的值代表不同的含义,默认为0,表示未初始化
//-1: table正在初始化;小于-1,表示table正在扩容;大于0,表示初始化完成后下次扩容的大小
private transient volatile int sizeCtl;
//table容量从n扩到2n时, 是从索引n->1的元素开始迁移, transferIndex代表当前已经迁移的元素下标
private transient volatile int transferIndex;
//扩容时候,CAS锁标记
private transient volatile int cellsBusy;
//计数器表,大小是2次幂
private transient volatile CounterCell[] counterCells;
上面就是ConcurrentHashMap的基本属性,我们大部分和HashMap一样,只是增加了部分属性,后面我们来分析增加的部分属性是起到如何的作用的。
2.2 ConcurrentHashMap的常用方法属性
put方法
final V putVal(K key, V value, boolean onlyIfAbsent) {
//key和value不允许为null
if (key == null || value == null) throw new NullPointerException();
//计算hash值
int hash = spread(key.hashCode());
int binCount = 0;
for (Node[] tab = table;;) {
Node f; int n, i, fh;
//如果table没有初始化,进行初始化
if (tab == null || (n = tab.length) == 0)
tab = initTable();
//计算数组的位置
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
//如果该位置为空,构造新节点添加即可
if (casTabAt(tab, i, null,
new Node(hash, key, value, null)))
break; // no lock when adding to empty bin
}//如果正在扩容
else if ((fh = f.hash) == MOVED)
//帮着一起扩容
tab = helpTransfer(tab, f);
else {
//开始真正的插入
V oldVal = null;
synchronized (f) {
if (tabAt(tab, i) == f) {
//如果已经初始化完成了
if (fh >= 0) {
binCount = 1;
for (Node e = f;; ++binCount) {
K ek;
//这里key相同直接覆盖原来的节点
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node pred = e;
//否则添加到节点的最后面
if ((e = e.next) == null) {
pred.next = new Node(hash, key, value, null);
break;
}
}
}//如果节点是树节点,就进行树节点添加操作
else if (f instanceof TreeBin) {
Node p;
binCount = 2;
if ((p = ((TreeBin)f).putTreeVal(hash, key,alue)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}//判断节点是否要转换成红黑树
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);//红黑树转换
if (oldVal != null)
return oldVal;
break;
}
}
}
//计数器,采用CAS计算size大小,并且检查是否需要扩容
addCount(1L, binCount);
return null;
}
我们发现ConcurrentHashMap的put方法和HashMap的逻辑相差不大,主要是新增了线程安全部分,在添加元素时候,采用synchronized来保证线程安全,然后计算size的时候采用CAS操作进行计算。整个put流程比较简单,总结下就是:
1.判断key和vaule是否为空,如果为空,直接抛出异常。
2.判断table数组是否已经初始化完毕,如果没有初始化,进行初始化。
3.计算key的hash值,如果该位置为空,直接构造节点放入。
4.如果table正在扩容,进入帮助扩容方法。
5.最后开启同步锁,进行插入操作,如果开启了覆盖选项,直接覆盖,否则,构造节点添加到尾部,如果节点数超过红黑树阈值,进行红黑树转换。如果当前节点是树节点,进行树插入操作。
6.最后统计size大小,并计算是否需要扩容。
get方法
public V get(Object key) {
Node[] tab; Node e, p; int n, eh; K ek;
//计算hash值
int h = spread(key.hashCode());
//如果table已经初始化,并且计算hash值的索引位置node不为空
if ((tab = table) != null && (n = tab.length) > 0 &&
(e = tabAt(tab, (n - 1) & h)) != null) {
//如果hash相等,key相等,直接返回该节点的value
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}//如果hash值为负值表示正在扩容,这个时候查的是ForwardingNode的find方法来定位到节点。
else if (eh < 0)
return (p = e.find(h, key)) != null ? p.val : null;
//循环遍历链表,查询key和hash值相等的节点。
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
return null;
}
get方法比较简单,主要流程如下:
1.直接计算hash值,查找的节点如果key和hash值相等,直接返回该节点的value就行。
2.如果table正在扩容,就调用ForwardingNode的find方法查找节点。
3.如果没有扩容,直接循环遍历链表,查找到key和hash值一样的节点值即可。
ConcurrentHashMap的扩容
ConcurrentHashMap的扩容相对于HashMap的扩容相对复杂,因为涉及到了多线程操作,这里扩容方法主要是transfer,我们来分析下这个方法的源码,研究下是如何扩容的。
private final void transfer(Node<K,V>[] tab, Node<K,V>[] nextTab) {
int n = tab.length, stride;
if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE)
stride = MIN_TRANSFER_STRIDE; // subdivide range
if (nextTab == null) {// initiating
try {
@SuppressWarnings("unchecked")
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n << 1];
nextTab = nt;
} catch (Throwable ex) { // try to cope with OOME
sizeCtl = Integer.MAX_VALUE;
return;
}
nextTable = nextTab;
transferIndex = n;
}
int nextn = nextTab.length;
ForwardingNode<K,V> fwd = new ForwardingNode<K,V>(nextTab);
boolean advance = true;
boolean finishing = false; // to ensure sweep before committing nextTab
for (int i = 0, bound = 0;;) {
Node<K,V> f; int fh;
while (advance) {
int nextIndex, nextBound;
if (--i >= bound || finishing)
advance = false;
else if ((nextIndex = transferIndex) <= 0) {
i = -1;
advance = false;
}
else if (U.compareAndSwapInt
(this, TRANSFERINDEX, nextIndex,
nextBound = (nextIndex > stride ?
nextIndex - stride : 0))) {
bound = nextBound;
i = nextIndex - 1;
advance = false;
}
}
if (i < 0 || i >= n || i + n >= nextn) {
int sc;
if (finishing) {
nextTable = null;
table = nextTab;
sizeCtl = (n << 1) - (n >>> 1);
return;
}
if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) {
if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT)
return;
finishing = advance = true;
i = n; // recheck before commit
}
}
else if ((f = tabAt(tab, i)) == null)
advance = casTabAt(tab, i, null, fwd);
else if ((fh = f.hash) == MOVED)
advance = true; // already processed
else {
synchronized (f) {
if (tabAt(tab, i) == f) {
Node<K,V> ln, hn;
if (fh >= 0) {
int runBit = fh & n;
Node<K,V> lastRun = f;
for (Node<K,V> p = f.next; p != null; p = p.next) {
int b = p.hash & n;
if (b != runBit) {
runBit = b;
lastRun = p;
}
}
if (runBit == 0) {
ln = lastRun;
hn = null;
}
else {
hn = lastRun;
ln = null;
}
for (Node<K,V> p = f; p != lastRun; p = p.next) {
int ph = p.hash; K pk = p.key; V pv = p.val;
if ((ph & n) == 0)
ln = new Node<K,V>(ph, pk, pv, ln);
else
hn = new Node<K,V>(ph, pk, pv, hn);
}
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
else if (f instanceof TreeBin) {
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> lo = null, loTail = null;
TreeNode<K,V> hi = null, hiTail = null;
int lc = 0, hc = 0;
for (Node<K,V> e = t.first; e != null; e = e.next) {
int h = e.hash;
TreeNode<K,V> p = new TreeNode<K,V>
(h, e.key, e.val, null, null);
if ((h & n) == 0) {
if ((p.prev = loTail) == null)
lo = p;
else
loTail.next = p;
loTail = p;
++lc;
}
else {
if ((p.prev = hiTail) == null)
hi = p;
else
hiTail.next = p;
hiTail = p;
++hc;
}
}
ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) :
(hc != 0) ? new TreeBin<K,V>(lo) : t;
hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) :
(lc != 0) ? new TreeBin<K,V>(hi) : t;
setTabAt(nextTab, i, ln);
setTabAt(nextTab, i + n, hn);
setTabAt(tab, i, fwd);
advance = true;
}
}
}
}
}
}
ConcurrentHashMap的扩容还是比较复杂,复杂主要表现在,控制多线程扩容层面上,扩容的源码我没有解析的很细,一方面是确实比较复杂,本人有某些地方也不是太明白,另一方面是我觉得我们研究主要是弄懂其思想,能搞明白关键代码和关键思路即可,只要不是重新实现一套类似的功能,我想就不用纠结其全部细节了。总结下ConcurrentHashMap的扩容步骤如下:
1.获取线程扩容处理步长,最少是16,也就是单个线程处理扩容的节点个数。
2.新建一个原来容量2倍的数组,构造过渡节点,用于扩容期间的查询操作。
3.进行死循环进行转移节点,主要根据finishing变量判断是否扩容结束,在扩容期间通过给不同的线程设置不同的下表索引进行扩容操作,就是不同的线程,操作的数组分段不一样,同时利用synchronized同步锁锁住操作的节点,保证了线程安全。
4.真正进行节点在新数组的位置是和HashMap扩容逻辑一样的,通过位运算计算出新链表是否位于原位置或者位于原位置+扩容的长度位置,具体分析可以查看我的这篇文章。
三、总结
1.ConcurrentHashMap大部分的逻辑代码和HashMap是一样的,主要通过synchronized和来保证节点插入扩容的线程安全,这里肯定有同学会问,为啥使用synchronized呢?而不用采取乐观锁,或者lock呢?我个人觉得可能原因有2点:
a.乐观锁比较适用于竞争冲突比较少的场景,如果冲突比较多,那么就会导致不停的重试,这样反而性能更低。
b.synchronized在经历了优化之后,其实性能已经和lock没啥差异了,某些场景可能还比lock快。所以,我觉得这是采用synchronized来同步的原因。
2.ConcurrentHashMap的扩容核心逻辑主要是给不同的线程分配不同的数组下标,然后每个线程处理各自下表区间的节点。同时处理节点复用了hashMap的逻辑,通过位运行,可以知道节点扩容后的位置,要么在原位置,要么在原位置+oldlength位置,最后直接赋值即可。