二阶常微分方程的数值解法(中心差分法和有限体积法)

本文介绍了使用中心差分法和有限体积法来解决二阶常微分方程的两点边值问题。通过MATLAB实现,分析了网格剖分,并对比了两种方法的最大误差和收敛阶,结论是两种方法的收敛阶均为二阶。
摘要由CSDN通过智能技术生成

二阶常微分方程的数值解法(中心差分法和有限体积法)

这里我们介绍中心差分法和有限体积法求解方程。
题目:
用差分法的中心差分格式和有限体积法求解两点边值问题
u ′ ′ − α ( 2 x − 1 ) u ′ − 2 α u = 0 , 0 < x < 1 u ( 0 ) = u ( 1 ) = 1 , u^{\prime\prime}-\alpha\left(2x-1\right)u^\prime-2\alpha u=0,0<x<1 u\left(0\right)=u\left(1\right)=1, u′′α(2x1)u2αu=0,0<x<1u(0)=u(1)=1,
其中,参数 α = 10 \alpha=10 α=10,得到不同网格最大误差和收敛阶。

问题分析

Step 1:网格剖分:首先取 N + 1 个节点为: a = x 0 < x 1 < x 2 < ⋯ < x N = b a=x_0<x_1<x_2<\cdots<x_N=b a=x0<x1<x2<<xN=b,
将区间 [a,b] 作等距剖分,划分为 N 个小区间,记 h = x i + 1 − x i , i = 1 , 2 , ⋯   , N − 1 h=x_{i+1}-x_i,i=1,2,\cdots,N-1 h=xi+1xi,i=1,2,,N1为网格步长.再进行对偶剖分:取相邻节点 x i + 1 , x i x_{i+1} ,x_i xi+1,xi 的中点 x i + 1 2 = 1 2 ( x i + 1 − x i ) , i = 1 , 2 , ⋯   , N − 1. x_{i+\frac{1}{2}}=\frac{1}{2}\left(x_{i+1}-x_i\right),i=1,2,\cdots,N-1. xi+21=21(xi+1xi),i=1,2,,N1.由这些节点构成的剖分为对偶剖分.
(i)中心差分法:
1 h 2 ( u i + 1 − 2 u i + u i − 1 ) − α ( 2 x i − 1 ) 2 h ( u i + 1 − u i − 1 ) − 2 α u i = 0 \frac{1}{h^2}\left(u_{i+1}-2u_i+u_{i-1}\right)-\frac{\alpha\left(2x_i-1\right)}{2h}\left(u_{i+1}-u_{i-1}\right)-2\alpha u_i=0 h21(ui+12ui+ui1)2hα(2xi1)(ui+1ui1)2αui=0
⇒ \Rightarrow
( 1 h 2 − r i ) u i + 1 + ( − 2 h 2 − 2 α ) u i + ( 1 h 2 + r i ) u i − 1 = 0 \left(\frac{1}{h^2}-r_i\right)u_{i+1}+\left(-\frac{2}{h^2}-2\alpha\right)u_i+\left(\frac{1}{h^2}+r_i\right)u_{i-1}=0 (h21ri)ui+1+(h222α)ui+(h21

  • 8
    点赞
  • 43
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值