二叉树性质

本文详细探讨了二叉树的性质,包括第n层的最大节点数、深度为k时的节点数量、具有n个节点的完全二叉树的深度、节点编号与双亲和子节点的关系,以及叶节点与不同度数节点的数量关系。
摘要由CSDN通过智能技术生成
  • 以下性质都只针对二叉树:

(1)第n层(n >=1)上至多有2^(n-1)个节点。

第一层为 1 2^0
第二层为 2 2^1
第三层为 4 2^2
...
第i层为 2^(n-1) 

(2)深度为k时,至多有2^k-1个节点(k>=1)。

由(1)可知用等比数列前n项和求出。

(3)具有n个节点的完全二叉树的深度为k = ⌊log₂n⌋+1.

k层完全二叉树,就是前(k-1)层为满二叉树,第k层均为叶结点,可以不满。所以结点与深度的关系为如下:

2^(k-1)<= n <=2^k-1 (<2^k)      (ps:不等式右边就是(1))

log₂n<=k<=log₂n+1   推出  k = ⌊log₂n⌋+1

(公式中用不用+1可以这样去想)当n=1时深度是1,n=2或3时深度为2。

(4)对一颗有n个节点的二叉树的节点按层次自左至右进行编号,则对于任意一个节点i,有:

  1. 当 i > 1, 则双亲为⌊i/2⌋
  2. 当 2i > n, 节点没有左孩子,否则左孩子为 2i.   (ps:因为每个节点的左孩子都是双数的)
  3. 当 2i + 1 > n, 参考上一条。

(5)对任意一颗二叉树,叶节点 数为n0,度为1的节点数为n1,度为2的节点数为n2,则n0 = n2 + 1。

设该二叉树的边数为N,节点数为M,则

M = n0 + n1 + n2;     N = M - 1;

又 N = n1 + 2 * n2;

得 n0 = n2 + 1;

 

ps:满二叉树和完全二叉树:

二叉树

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值